

A Parallelized Elliptic Curve Multiplication and its Resistance Against Side-channel Attacks*

(* Joint work with Tsuyoshi Takagi)

(株)富士通研究所 セキュアコンピューティング研究部 伊豆 哲也

FUJITSU LABORATORIES LTD.

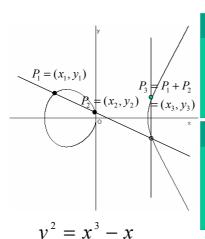
2002年1月26日(土) お茶の水大学理学部

Contents

- A faster multiplication algorithm resistant against the SCA on both parallel and single computations
- Parallelized computation
 - paralleliziation of an ECADD and an ECDBL
- New addition chain and addition formula
- \nearrow \mathcal{X} -coordinate-only method
- ightharpoonup (m,m+1)-method
- Resistance against the side-channel attacks (SCA)

Elliptic Curves

E/GF(p): $y^2 = x^3 + ax + b$ (Weierstrass form of an elliptic curve)



Addition
$$x_3 = \left(\frac{y_1 - y_2}{x_1 - x_2}\right)^2 - x_1 - x_2$$

(ECADD) $y_3 = \left(\frac{y_1 - y_2}{x_1 - x_2}\right)(x_1 - x_3) - y_1$

Doubling
$$x_4 = \left(\frac{3x_1^2 + a}{2y_1}\right)^2 - 2x_1$$
(ECDBL)
$$y_4 = \left(\frac{3x_1^2 + a}{2y_1}\right)(x_1 - x_4) - y_1$$

FUJITSU LABORATORIES LTD.

Scalar Multiplication

To compute $d \times P = \underbrace{P + P + \ldots + P}_{d \text{ times}}$

- Necessary for all elliptic curve-based cryptosystems and the most time-consuming computation.
- ✓ How to compute efficiently?

$$100 \times P = \underbrace{P + P + \dots + P}_{100}$$

99 ECADDs

 $100 \times P = 64 \times P + 32 \times P + 4 \times P$

6 ECDBLs + 2 ECADDs

Addition chain: How to combine ECADD/ECDBL

Coordinate system: How to represent ECADD/ECDBL

Addition Chain

Algorithm 1 (from the MSB)

$$Q[0] = P$$

for i=n-2 down to 0

$$Q[0] = ECDBL(Q[0])$$

if d[i]=1 then Q[0] = ECADD(Q[0],P)

return(Q[0])

$$d = 2^{n-1} + d[n-2] \times 2^{n-2} + \dots$$

+ $d[1] \times 2 + d[0]$

(binary representation of d)

Example

$$d = 100 = 2^6 + 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2 + 0$$

$$P \quad 2 \times P \quad 6 \times P \quad 12 \times P \quad 24 \times P \quad 50 \times P \quad 100 \times P$$
$$3 \times P \qquad \qquad 25 \times P$$

FUJITSU LABORATORIES LTD.

6 ECDBLs + 2 ECADDs

Smart's Idea

N.Smart (2001)

 $E \cdot X^3 + Y^3 + Z^3 = cXYZ$ (Hessian form of an elliptic curve)

► ECADD $(X_3:Y_3:Z_3) = (X_1:Y_1:Z_1) + (X_2:Y_2:Z_2)$

$$\lambda_{1} = X_{2} \times Y_{1}$$

$$\lambda_{2} = Y_{2} \times X_{1}$$

$$\lambda_{3} = Z_{2} \times X_{1}$$

$$\lambda_{5} = Y_{2} \times Z_{1}$$

$$\lambda_{6} = Z_{2} \times Y_{1}$$

$$\lambda_{6} = Z_{2} \times Y_{1}$$

$$\lambda_{7} = \lambda_{1} \times \lambda_{6}$$

$$\lambda_{8} = \lambda_{2} \times \lambda_{3}$$

$$\lambda_{8} = \lambda_{1} \times \lambda_{4}$$

$$\lambda_{8} = \lambda_{1} \times \lambda_{4}$$

$$\lambda_{8} = \lambda_{2} \times \lambda_{3}$$

$$\lambda_{9} = \lambda_{1} \times \lambda_{4}$$

$$\lambda_{1} = \lambda_{2} \times \lambda_{5}$$

$$\lambda_{2} = \lambda_{1} \times \lambda_{4}$$

$$\lambda_{3} = \lambda_{5} \times \lambda_{4}$$

$$\lambda_{4} = \lambda_{5} \times \lambda_{4}$$

$$\lambda_{5} = \lambda_{5} \times \lambda_{4}$$

$$\lambda_{7} = \lambda_{1} \times \lambda_{5}$$

$$\lambda_{8} = \lambda_{5} \times \lambda_{4}$$

$$\lambda_{8} = \lambda_{5} \times \lambda_{5}$$

$$\begin{aligned} s_2 &= \lambda_2 \times \lambda_1 \\ t_2 &= \lambda_1 \times \lambda_1 \\ Y_2 &= s_2 - t \end{aligned}$$

 $\lambda_1 = X_2 \times Y_1 \qquad \lambda_2 = Y_2 \times X_1 \qquad \lambda_3 = Z_2 \times \overline{X_1}$ $\lambda_4 = X_2 \times Z_1 \qquad \lambda_5 = Y_2 \times Z_1 \qquad \lambda_6 = Z_2 \times Y_1$ $s_1 = \lambda_1 \times \lambda_6 \qquad \qquad s_2 = \lambda_2 \times \lambda_3 \qquad \qquad s_3 = \lambda_5 \times \lambda_4$ $X_3 = s_1 - t_1$ $Y_3 = s_2 - t_2$ $Z_3 = s_3 - t_3$

CPU1

CPU2 CPU3

✓ Computation Time 12M → 4M parallel computation with 3 CPUs

Addition Chain Again

- **Target:** to parallelize ECADD and ECDBL
- **∠** But...

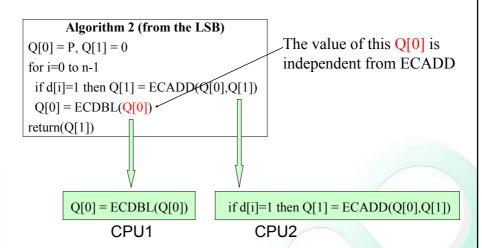
ECADD and ECDBL in Algorithm 1 cannot be parallelized

Algorithm 1 (from the MSB) Q[0] = Pfor i=n-2 down to 0 Q[0] = ECDBL(Q[0])if d[i]=1 then Q[0] = ECADD(Q[0], P)return(Q[0])

The value of this Q[0] is determined after ECDBL

FUJITSU LABORATORIES LTD.

Another Chain



■ ECADD and ECDBL in Algorithm 2 can be parallelized

Coordinate System

Affine coordinate system (A)

$$E: y^2 = x^3 + ax + b$$
 $P = (x, y)$

ECADD:
$$x_3 = \left(\frac{y_1 - y_2}{x_1 - x_2}\right)^2 - x_1 - x_2, y_3 = \left(\frac{y_1 - y_2}{x_1 - x_2}\right)(x_1 - x_3) - y_1$$

ECDBL:
$$x_4 = \left(\frac{3x_1^2 + a}{2y_1}\right)^2 - 2x_1, y_4 = \left(\frac{3x_1^2 + a}{2y_1}\right)(x_1 - x_4) - y_1$$

✓ As computing inversions is time-consuming (1I=30 ~ 50M), we want to avoid inversions.

FUJITSU LABORATORIES LTD.

Coordinate System (cnt'd)

Projective coordinate system (P)

$$E: Y^2Z = X^3 + aXZ^2 + bZ^3$$
 $x = \frac{X}{Z}, y = \frac{Y}{Z}$
 $P = (X:Y:Z)$ $(X:Y:Z) = (rX:rY:rZ)$

Jacobian coordinate system (f)
$$x = \frac{X}{Z^2}, y = \frac{Y}{Z^3}$$

 $E: Y^2 = X^3 + aXZ^4 + bZ^6$ $x = \frac{X}{Z^2}, y = \frac{Y}{Z^3}$
 $P = (X:Y:Z)$ $(X:Y:Z) = (r^2X:r^3Y:rZ)$

Chudonovsky(-Jacobian) coordinate system (\mathcal{J}°)

$$P = (X : Y : Z : Z^2 : Z^3)$$

the modified Jacobian coordinate system (\mathcal{J}^{m})

$$P = (X : Y : Z : aZ^4)$$

No need to compute inversions!

Comparison

AD	
and all annuals	
FULLIN	
1 2011 122	ř

	ECADD		ECDBL
	Z ≠ 1	Z=1	
А	2M+1S+1I	N/A	2M+2S+1I
\mathcal{P}	12M+2S	9M+2S	7M+5S
\mathcal{I}	12M+4S	8M+3S	4M+6S
$\mathcal{J}^{\mathcal{C}}$	11M+3S	8M+3S	5M+6S
\mathcal{J}^m	13M+6S	9M+5S	4M+4S

M: multiplication, S: squaring, I: inversion in the base field GF(p)

FUJITSU LABORATORIES LTD.

Montgomery's Idea

Fปฏิเริย

P.Montgomery (1987)

 $E: By^2 = x^3 + Ax^2 + x$ (Montgomery form of an elliptic curve)

$$P_3 = P_1 + P_2, P_3' = P_1 - P_2, P_4 = 2P_1$$

ECADD:
$$x_3 = \frac{(x_1 x_2 - 1)^2}{\dot{x_3} (x_1 - x_2)^2}$$
 3M+2S

ECDBL:
$$x_4 = \frac{(x_1^2 - 1)^2}{4(x_1^3 + Ax_1^2 + x_1)}$$
 3M+2S

y-coordinates are not used

x-coordinate-only Method

χ -coordinate-only method for Weierstrass form

- ✓ Also discussed by Montgomery.
- ✓ No computational advantages were not known.
- ☑ Direct translation

$$x_3 \times x_3 = \frac{(x_1 x_2 - a)^2 - 4b(x_1 + x_2)}{(x_1 - x_2)^2}, \quad x_4 = \frac{(x_1^2 - a)^2 - 8bx_1}{4(x_1^3 + ax_1 + b)^2}$$

✓ Another (additive) formula for ECADD.

$$x_3 + x_3' = \frac{2(x_1 + x_2)(x_1x_2 + a) + 4b}{(x_1 - x_2)^2}$$

FUJITSU LABORATORIES LTD.

Comparison

	ECADD		ECDBL	
	Z ≠ 1	Z=1		
А	2M+1S+1I	N/A	2M+2S+1I	
\mathcal{P}	12M+2S	9M+2S	7M+5S	
\mathcal{I}	12M+4S	8M+3S	4M+6S	
$\mathcal{J}^{\mathcal{C}}$	11M+3S	8M+3S	5M+6S	
\mathcal{J}^m	13M+6S	9M+5S	4M+4S	
x (mul)	9M+2S	8M+2S	6M+3S	
x (add)	10M+2S	8M+2S		

But...

FUITSU

We need $P_3' = P_1 - P_2$ to compute $P_3 = P_1 + P_2$ So Algorithm 1/Algorithm 2 cannot be combined.

Algorithm 3 ((m,m+1)-method)

$$Q[0] = P, Q[1] = 2*P$$

for i=n-2 to 0

Q[2] = ECDBL(Q[d[i]])

Q[1] = ECADD(Q[0],Q[1])

Q[0] = Q[2-d[i]]

Q[1] = Q[1+d[i]]

return(Q[0])

 $100 = (1100100)_2$

P = 2*P

 $1 \ 3*P \ 4*P$

0 6*P 7*P

0 12*P 13*P

1 25*P 26*P

0.50*P.51*P

0 100*P 101*P

FUJITSU LABORATORIES LTD.

Another Problem...

FUใTSU

4*P

y-recovering is needed

- We have to recover y_d to obtain the whole value of $d \times P = (x_d, y_d)$
- Originally introduced by Agnew-Mullin-Vanstone for the binary field case.

y-recovering for Weierstrass form

$$y_d = \frac{y^2 + x_d^3 + ax_d + b - (x - x_d)^2 (x + x_d + x_{d+1})}{2y}$$

$$100 = (1100100)_2$$

$$P \qquad 2*P$$

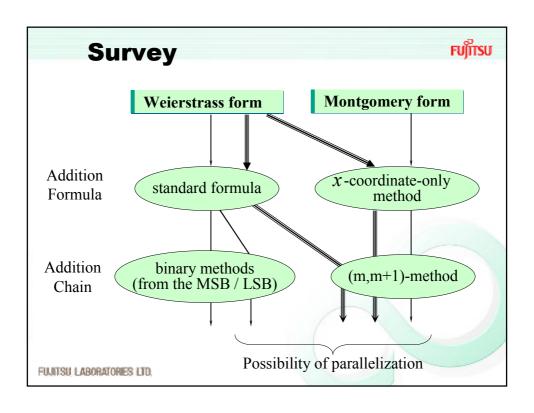
$$0.6*P.7*P$$

1 3**P*

$$0 \ 50*P \ 51*P$$

$$0 \ \boxed{100*P} \boxed{101*P}$$

$$d \times P \quad (d+1) \times P$$



Comparison (2CPU)

		In each bit	Total (<i>n</i> =160)	
Alg 2	${\cal P}$	12M+2S	1920M+318S+1I	2204.8M
	\mathcal{J}	12M+4S	1922M+640S+1I	2464.0M
	$\mathcal{J}^{\mathcal{C}}$	11M+3S	1762M+480S+1I	2176.0M
Alg 3	\mathcal{P}	12M+2S	1917M+323S+1I	2205.8M
	\mathcal{J}	12M+4S	1916M+643S+1I	2460.8M
	$\mathcal{J}^{\mathcal{C}}$	11M+3S	1758M+484S+1I	2175.2M
	x (mul)	8M+2S	1280M+321S+1I	1565.8M
	x (add)	8M+2S	1280M+321S+1I	1565.8M

Assumptions: 1S=0.8M, 1I=30M

A non-parallelized method by Lim-Hwang needs 1566.4M

Elliptic Curve Cryptosystem

- ☑ Elliptic curve-based cryptosystem achieves higher security with smaller key-length.
- Suitable for implementing in constrained devices such as smart cards and mobile phones.
- ▼ The side-channel attacks (SCA) may be applicable if the implementation is naïve or careless.

FUJITSU LABORATORIES LTD.

Side-Channel Attacks

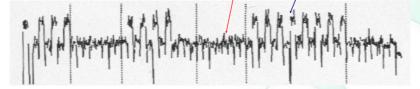
Algorithm 1 (from the MSB)

Q[0] = P

for i=n-2 down to 0

 $Q[0] = ECDBL(Q[0])^{*}$

if d[i]=1 then Q[0] = ECADD(Q[0], P)return(Q[0]) The time or the power to execute ECDBL and ECADD are different (side-channel information).



SPA: Simple Power Analysis **DPA**: Differential Power Analysis

Countermeasures against SPA FUTTSU

Add-and-double-always method (Coron, 1999)

Compute ECADD and ECDBL in each bit.

Algorithm 1' (from the MSB)

Q[0] = P

for i=n-2 down to 0

Q[0] = ECDBL(Q[0])

Q[1] = ECADD(Q[0],P)

Q[0] = Q[d[i]]

return(Q[0])

Algorithm 2' (from the LSB)

Q[0] = P, Q[1] = 0

for i=0 to n-1

Q[2] = ECADD(Q[0],Q[1])

Q[0] = ECDBL(Q[0])

Q[1] = Q[1+d[i]]

return(Q[1])

✓ Trade-off: slower complutation

FUJITSU LABORATORIES LTD.

Countermeasures against DPA FUTTSU

Randomized parameters (Coron, 1999)

- ✓ Dummy CPU (Coron, 1999)
- Randomized Z-coordinate (Coron, 1999)

$$(X:Y:1) \xrightarrow{randomization} (rX:rY:r)$$

■ Randomized curve (Joye-Tymen, 2001)

$$y^2 = x^3 + ax + b \xrightarrow{randomization} y^2 = x^3 + r^4 ax + r^6 b$$

$$(x:y:1) \xrightarrow{randomization} (r^2x:r^3y:1)$$

Security of Algorithm 3

Theorem (Security against the SPA)

Algorithm 3 is as secure as Algorithm 1'/2' against the SPA, if we use a computing archtecture whose swapping power of two variables is negligible.

Theorem (Security against the DPA)

Algorithm 3 with Coron's or Joye-Tymen's countermeasure is as secure as Algorithm 1'/2' against the DPA.

Algorithm 3 ((m,m+1)-method)

Q[0] = P, Q[1] = 2*Pfor i=n-2 to 0

Q[2] = ECDBL(Q[d[i]])

Q[1] = ECADD(Q[0],Q[1])

Q[0] = Q[2-d[i]]

Q[1] = Q[1+d[i]]

return(Q[0])

FUJITSU LABORATORIES LTD.

Comparison (2CPU)

		In each bit	Total (<i>n</i> =160)	
Alg 2' / Coron	${\cal P}$	12M+2S	1924M+320S+1I	2210.0M
	\mathcal{J}	12M+4S	1926M+642S+1I	2469.6M
	$\mathcal{J}^{\mathcal{C}}$	11M+3S	1766M+482S+1I	2181.6M
Alg 3	x(mul)	9M+2S	1454M+325S+1I	1744.0M
/ Coron	x(add)	10M+2S	1613M+325S+1I	1903.0M
Alg 3 / JT	${\cal P}$	12M+2S	1923M+325S+1I	2213.0M
	\mathcal{J}	12M+4S	1920M+645S+1I	2466.0M
	$\mathcal{J}^{\mathcal{C}}$	11M+3S	1762M+486S+1I	2180.8M
	x(mul)	8M+2S	1301M+328S+1I	1593.4M
	x (add)	8M+2S	1301M+328S+1I	1593.4M

Comparison (1CPU)

		In each bit	Total (<i>n</i> =160)	
Alg 1' / JT	Р	16M+7S	2553M+1116S+1I	3475.8M
	\mathcal{I}	12M+9S	1917M+1435S+1I	3095.0M
	$\mathcal{J}^{\mathcal{C}}$	13M+9S	2076M+1435S+1I	3254.0M
Alg 2' / JT	\mathcal{P}	19M+7S	3049M+1123S+1I	3977.4M
	\mathcal{I}	16M+10S	2569M+1604S+1I	3882.2M
	$\mathcal{J}^{\mathcal{C}}$	16M+9S	2569M+1444S+1I	3754.2M
Alg 3	x (mul)	15M+5S	2408M+802S+1I	3079.6M
/ Coron	x (add)	16M+5S	2567M+802S+1I	3238.6M
	P	19M+7S	3036M+1120S+1I	3962.0M
A1~ 2	\mathcal{I}	16M+10S	2556M+1599S+1I	3865.2M
Alg 3 / JT	$\mathcal{J}^{\mathcal{C}}$	16M+9S	2557M+1597S+1I	3739.0M
	X (mul)	14M+5S	2255M+805S+1I	2929.0M
	x (add)	14M+5S	2255M+805S+1I	2929.0M

FUJITSU LABORATORIES LTD.

(Improved: 2641.8M)

Summary

- A faster multiplication algorithm resistant against the SCA on both parallel and single computations
- Parallelized computation
 - paralleliziation of an ECADD and an ECDBL
- New addition chain and addition formula
- ightharpoonup χ -coordinate-only method
- ightharpoonup (m,m+1)-method
- Resistance against the side-channel attacks (SCA)

THE POSSIBILITIES ARE INFINITE