
Topics on odd perfect

numbers with a special

structure

Tomohiro Yamada

Jul 7, 2007

1



Introduction

As usual, we denote by σ(N) the sum

of divisors of N .

N is said to be perfect if σ(N) = 2N .

It is one of the most infamous un-

solved problems whether an odd per-

fect number exists.

It has been known an odd perfect num-

ber must satisfy various conditions.
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Suppose N is an odd perfect number.

Euler has shown that N = pαq
2β1
1 · · · q

2βt
t

for distinct odd primes p, q1, · · · , qt with

p ≡ α ≡ 1 (mod 4).

In this talk, we would like to talk about

(β1, · · · , βt).
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There are known some results con-

cerning forbidden values of (β1, · · · , βt).

• (β1, · · · , βt) 6= (1, · · · ,1)(Steuerwald,

1937).

• We cannot have β1 ≡ · · · ≡ βt ≡ 1

(mod 3)(McDaniel, 1970).
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If β1 = · · · = βt = β, then it is known

that

• β 6= 2(Kanold 1941),

• β 6= 3(Hagis and McDaniel 1972),

• β 6= 5,12,17,24,62(McDaniel and

Hagis 1975),
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• β 6= 6,8,11,14,18(Cohen and Williams

1985).

• N ≤ 244β2+2β+3
(Yamada 2005).

McDaniel and Hagis conjecture that

β1 = · · · = βt = β does not occur.



Now we have a question: can we have

β1, · · · , βt ≤ 2? It is known that

• (β1, β2, · · · , βt) 6= (2,1, · · · ,1)(Kanold

1942, Brauer 1943).

• (β1, β2, · · · , βt) 6= (2,2,1, · · · ,1)(Kanold

1953).
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It is known that if β1, · · · , βt ≤ 2, then

• N does not have prime factor smaller

than 739(Cohen 1987).

• α 6= 5(Kanold 1953).

• α ≡ 1 (mod 12) or 9 (mod 12)(McDaniel

1970).
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Our results

Theorem 1. Let N = qα
0q21 · · · q2s q4s+1 · · · q4s+t

be an odd perfect number, where

q0, q1, · · · , qt are distinct primes, then

N has a prime factor less than

exp(4.97401 × 1010).
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Theorem 2. Let N = qα
0q21 · · · q2s q4s+1 · · · q4s+t

be an odd perfect number, where

q0, q1, · · · , qt are distinct primes, then

N does not have prime factor smaller

than 2500000.



Proof of Theorem 1

If p 6= q0, then q2i + qi +1 ≡ 0 (mod p)

for at most five primes qi with 1 ≤ i ≤

s. Similarly, q4i + q3i + q2i + qi + 1 ≡ 0

(mod p) for at most five primes qi with

s + 1 ≤ i ≤ s + t.

It follows from classical sieve theory

that the number of primes ≤ x divid-

ing N is O(x/(log x)2) with an absolute

implied constant.
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So we can conclude that if q1, · · · , qs+t >

C, then σ(N)/N < 2. That is, if N =

peq21 · · · q2s q4s+1 · · · q4s+t is perfect, then

N has a prime factor smaller than an

effective computable constant C.

Computation of C requires a quantita-

tive upper bound sieve(Greaves 2001)

and various informations concerning the

distribution of prime numbers (Rosser

and Schoenfeld 1962, Ramare and Rumely

1996, Dusart 2001).
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Proof of Theorem 2

Our idea is simple; for each prime 739 ≤

p < 2500000, we derive contradiction

from the assumption that p is the small-

est prime factor of N .
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Our algorithm to derive contradiction

is also simple.

1. Begin with p0 = p.

2. For a prime pi, we choose an in-

teger ei ∈ {1,2,4}({2,4} if ej = 1

for some j < i).
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3. If the smallest prime factor of σ(p
ei
i )

is smaller than p, then we return

”error” for (pi, ei). Otherwise, choose

a prime factor r of σ(p
ei
i ) different

from p1, · · · , pi, let pi+1 = r and

go to Step 1 with i incremented.

If r yields ”error”, then we return

”error” for (pi, ei).

4. If any choice ei yields ”error”, then

we return ”error” for pi. We go to

Step 1 with i decremented.



In our implimentation, we take r as the

smallest prime factor of σ(p
ei
i ) in Step

2 for simplicity. We implemented the

procedure in C, using PARI-GP library

for the large integer arithmetic. We

executed our procedure in Celeron(R)

2.00GHz.
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The procedure terminated for all primes

≤ 2500000 except 964697, 1121693,

1485413, 1666177, 1867003.

The procedure ran for

1. 21104 seconds for primes ≤ 964693,

2. 2811 seconds for primes ≥ 964703

and ≤ 1121689,
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3. 16975 seconds for primes ≥ 1121699

and ≤ 1485397,

4. 1428 seconds for primes ≥ 1485433

and ≤ 1666151,

5. 1590 seconds for primes ≥ 1666201

and ≤ 1867001,

6. 2098 seconds for primes ≥ 1867009

and ≤ 2133277,



7. 96880 seconds for primes ≥ 2133281

and ≤ 2500000.

The most time-taking prime is 2133281,

which required 71945 seconds. This is

due to the prime factoring of σ(σ(σ(21332812)4)2),

a 102 digit number. This 102 digit

number has a prime factor congruent

to 31 (mod 60) and therefore unac-

ceptable.



The largest value of i appearing in our

procedure(we call the depth) was 4.

The first prime with depth 4 is 30803.

We showed that neither of 964697,

1121693, 1485413, 1666177, 1867003

can be the smallest prime divisor of N

by modifying a choice of r in Step 2.

This proves Theorem 2.



Unsolved problems

Despite of our effort, it is still unsolved

whether there exists an odd sixth-power-

free perfect number.

We pose some other related problems.
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• Does our procedure always termi-

nate?

We conjecture that our procedure ter-

minates for any prime returing ”er-

ror”. If so, then an odd perfect num-

ber must be divisible by a sixth power

of prime.

In view of Theorem 1, if our proce-

dure terminates returning ”error” for
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all primes below exp(4.97401 × 1010),

then we would show that an odd per-

fect number must be divisible by a

sixth power of prime!



• Is there a prime with arbitrarily large

depth?

We conjecture that although our pro-

cedure terminates for any prime, there

exists a prime with arbitrarily large depth.

Of course, it suffices to check all primes

below exp(4.97401× 1010) and there-

fore the depth is bounded from a ”prac-

tical” view!
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• Are there infinitely many primes p

for which σ(p2)(or σ(p4)) has no

prime factor ≡ 1 (mod 15)?

If σ(p2)(or σ(p4)) has a prime factor

q ≡ 1 (mod 15), then 3 | σ(q2) and 5 |

σ(q4). So q does not divide N unless

q = q0.

We conjecture that there are infinitely

many primes p for which σ(p2)(or σ(p4))

has no prime factor ≡ 1 (mod 15).
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This may be easier to prove than the

conjecture that there are infinitely many

primes p for which σ(p2)(or σ(p4)) is

prime again.
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Thank you very much for listening!

THE END
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