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Abstract

To integer programming problems, computational algebraic approaches using Grébner
bases or standard pairs via the discreteness of toric ideals have been studied in recent years.
Although these approaches do not give improved time complexity bound compared with
existing methods for solving integer programming problems, these give algebraic analysis
for structure of integer programming problems. In this paper, we focus on the minimum
cost flow problems, whose structure is well-known, and analyze using standard pairs.
Especially, using some results about Grobner bases for toric ideals and hypergeometric
functions, we show that the number of vertices of the (nondegenerate) dual polyhedra for
minimum cost flow problems on acyclic directed graphs is more than 1 and less than the
Catalan number.

1 Introduction

Recently, some algebraic approaches to integer programming problems have been studied. The
two main approaches are an approach using Grébner bases [4] and that using standard pair
decompositions [6]. Although they do not give improved complexity bounds compared with
existing methods, these approaches themselves are very interesting by applying computational
algebraic methods to such hard problems, and give algebraic analysis for structure of integer
programming problems. Several results about structure of integer programming problems have
givin using Grobner bases [4, 11, 13, 14, 16] and standard pairs [6, 7).

The minimum cost flow problem forms a well-known subclass of integer programming prob-
lems which can be solved in polynomial time. Grobner basis approach for the minimum cost
flow problems is a variant of cycle-canceling algorithm, in the sense that, for any feasible flow,
we can obtain the optimal flow by augmenting flows along the cycles which correspond to the
elements of the Grobner basis as many as possible. On the other hand, standard pair approach
for the minimum cost flow problems first finds the set of standard pairs, and solves linear sys-
tem of equations for each standard pair until an integer and non-negative solution is obtained.
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Since each standard pair for the minimum cost flow problem corresponds to a vertex of (non-
degenerate) dual polyhedron of the problem, this approach is a variant of the enumeration of
dual bases. For more details about enumerations of polyhedrons, see e.g. [15].

The fact that each standard pair corresponds to a vertex of dual polyhedron of the minimum
cost flow problem also implies that the number of standard pairs for the minimum cost flow
problem gives the number of vertices of dual polyhedron of the problem. The number of
vertices of dual polyhedra for some special problems have been studied. Especially, for the
transportation problem on m X n bipartite graph, which is equivalent to the minimum cost flow
problem on the graph with m + n vertices, the number of vertices is at most (m;:f;?) [2]. We
show that, for the minimum cost flow problem on an acyclic directed graph with d vertices,
the number of vertices of the dual polyhedron is at most 5(2(51:11)), which is the (d — 1)-
th Catalan number. This upper bound is shown by combining two results, one is about a
characterization of Grébner basis for minimum cost flow problem [8], and the other is about
the special hypergeometric function [5].

This paper is organized as follows. In Section 2, standard pair decompositions are defined
and their relations to regular triangulations, dual polyhedra and integer programming problems
are introduced. In Section 3, we characterize the standard pairs for the minimum cost flow
problems. In Section 4, the minimum and the maximum number of vertices of dual polyhedra
are shown for the minimum cost flow problems on acyclic tournament graphs. The methods
which are used to show these results are also shown. For the problems on acyclic directed

graphs, these results give upper and lower bounds. Finally in Section 5 we conclude this paper.

2 Standard pair decompositions of integer programs

In this section, we give some definitions about standard pairs, and their relations to regular
triangulations, dual polyhedra and integer programmings. We refer to [12] for the introduction
of standard pairs, and [6, 7] for their applications.

2.1 Standard pairs, regular triangulations and dual polyhedra

We fix a matrix A € Z4" and a cost vector ¢ € R™, and consider the family P4 ¢ of integer
programming problems I Py ¢(b) := minimize{c-® | Ax = b, © € N"} as b varies in {Au | u €
N"} C Z% (N is the set of non-negative integers, and Z is the set of integers). We assume that ¢
is generic in the sense that each program in I P4 ¢ has a unique optimal solution. For a fixed ¢,
let Oc C N™ be the set of all the optimal solutions to all programs in IPy4 ¢, and N¢ := N*\ Oe.
Then there exists a unique minimal finite set {py, ... ,p,} C N" such that Ne = UJ;_, (p; +N"),
where p, + N" := {p, + v | w € N"} [13]. Algebraically, p,,...,p, are the set of exponent
vectors of initial terms of G¢, which is the reduced Grobner bases of the toric ideal I4 with
respect to e.

For a € N* and o C {1,...,n}, we define the set of points (a,o) in N” as (a,0) =
{a, + Ziea kie; | k; € N}, where e; is an i-th unit vector in R".

Definition 2.1 (a,0) is a standard pair of O¢ if

(i) the support of a is contained in {1,... ,n}\ o,
(ii) (a,0) C O¢, and
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Figure 1: The network N and two types of standard pair decompositions

(iii) (a,0) Z (b,T) for any other (b, ) which satisfies (i) and (ii).
We denote S(O¢) the set of all standard pairs of Oe.

The standard pairs of O¢ induce a unique covering of O¢, which we call the standard pair de-
composition of O¢. |S(O¢)| is called the arithmetic degree of O¢ and denoted by arith-deg (O¢).
Because of the genericity of ¢, O¢ is not empty and arith-deg (O¢) > 1.

Example 2.2 Let A be the matriz which is obtained from the incidence matriz of the net-
work shown in Figure 1. For ¢ = (c1,c¢2,c3) with ¢; + ¢3 > ¢, the standard pairs of Oc¢ are
((0,0,0),{1,2}) and ((0,0,0),{2,3}), thus the arithmetic degree of O¢ is 2. On the other hand,
for e with ¢; + ¢3 < cq, the standard pair of O¢ is ((0,0,0),{1,3}), thus the arithmetic degree
of Oc is 1.

Let {a1,...,a,} be the column vectors of A and cone(A) the cone generated by a4, ... ,a,.
For 0 C {1,...,n}, we denote A, for the submatrix of A whose columns are indexed by o.
For a cost vector e, we define the regular triangulation Ae of cone(A) as follows: cone(A,)
is a face of A if and only if there exists a vector y € R? such that y-a; = ¢; (j € o) and
y-a; <c; (j¢o) If cone(A,) is a face of Ae, o also is called a face of Ae. The genericity of
c implies that A¢ is in fact a triangulation (i.e. each face of A¢ is simplicial) [11].

Lemma 2.3 ([10, 12])
(1) If Oc has (x,0) as a standard pair, then o is a face of Ac.
(ii) Oc has ((0,...,0),0) as a standard pair if and only if o is a mazimal face of Ae.

(iii) If a4,...,a, span an affine hyperplane, then Ac is same as a regular triangulation of
conv(A) with respect to e, and the number of standard pairs (x,0) for a mazimal face o
of Ac equals the normalized volume of o in Ae.

When the vertices of conv(A) are in the m-dimensional lattice L ~ Z™, we define the
normalized volume of a maximal face o of Ae by the volume of ¢ with the normalization that
the volume of the convex hull of 0, eq,... , e, is 1. Here, {e;}1<;<, are the basis of the lattice
L.

For a polyhedron P C R™ and a face F' of P, the normal cone of F' at P is the cone
Np(F) ={w € R" |w-2' > w-z forall ' € F and = € P}. The set of normal cones for all
faces of P is called the normal fan of P.
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Figure 2: The dual polyhedron Pe and the triangulation A¢ of Example 2.2

Lemma 2.4 ([7]) Ac is the normal fan of the polyhedron Pe := {y € R? | yA < c}.
We remark that Pg is the dual polyhedron of the linear relaxation problem
LPyc(b) := minimize{c-x | Ax =b,x > 0}

of IP4 ¢(b). This lemma shows that there is one-to-one correspondence between the minimal
faces of Pe and the maximal faces of Ae.

Example 2.2 (continued.) Figure 2 shows the dual polyhedron Pe and A¢ for ¢ with ¢;+c3 >
co. We remark that cone(A) is contained in the hyperplane x1 + x5 + 3 = 0.

2.2 Standard pair decompositions and integer programs

Using the standard pair decomposition of O¢, IP4c(b) can be solved by solving at most
(arithmetic degree of O¢)-many linear systems of equations [6]. We describe the outline of this
approach.

Let w be the optimal solution to I P4 ¢(b). Since the standard pairs cover Og, u is covered
by some standard pair (a,0). Thus u =a + ) _,__k;e; for some non-negative integers {k;}ic,,
and

i€o

b = Au

= A <a+ Zkiei)

i€o

= Aa+ Z kzaz

i€0

Lemma 2.3 implies that {a;};c, are linearly independent, and therefore {k;};c, is the unique
solution to the linear system

Zmiai =b-— Aa. (1)

i€o

This observation induces an algorithm to solve P4 ¢(b) using the standard pair decomposition
of Oc.

Algorithm 2.3 (Solving IP4 ¢(b) using S(O¢))
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(i) For (a,0) € S(O¢), solve the linear system (1). Let {k;}ic, be the solution.

ii) If {k;}ico are all both integral and non-negative, output a + > .. _k;e; as the optimal solu-
1€0
tion. Otherwise, repeat (1) for another standard pair.

This algorithm solves at most arith-deg (O¢)-many linear systems of equations. Therefore
arithmetic degree of O¢ is a measure of the complexity of 1Py ¢.

3 Standard pairs of directed graphs

We consider that A is the incidence matrix of a network N = (V| E') such that |V| =d, |E| = n,

bc {Au | u € N"} and ¢ € R%,. This means that P4 ¢(b) is an uncapacitated minimum cost

flow problem on N with the demand/supply vector b. In the case of the minimum cost flow

problem, we can set the value of one variable in the dual problem freely. Then we define the

dual polyhedron of the minimum cost flow problem IP4 ¢(b) as {y € RY|yA < ¢ and y4 = 0}.
In this case, N¢ has a special property as follows.

Lemma 3.1 Let {p,,...,p,} be the minimal vectors such that Ne = |J;_,(p; + N"). Then all
Py, .., D, are 0-1 vectors for any cost vector ¢ € Rgo.

Proof: In [8], we showed that reduced Grébner basis for I, with respect to any ¢ corresponds
to the set of circuits in N. This implies that the exponent vectors of reduced Grobner basis
are 0-1 vectors. [

When Ne is generated by 0-1 vectors, the set S(O¢) are obtained by all of the maximal
faces of Ae.

Lemma 3.2 ([7]) Let{p;,...,p,} be the minimal vectors such that Ne = |J;_,(p;+N"). Then
D1 -, D, are all 0-1 vectors if and only if S(Oc¢) = {((0,...,0),0) | 0 is a mazimal face of Ac}.

The edges in the optimum flow of uncapacitated minimum cost flow problem define a for-
est [1]. Therefore, with the fact the dimension of cone(A) equals d — 1, the next proposition is
implied by Lemma 2.3, 3.1 and 3.2.

Proposition 3.3 Any standard pair of O¢ is ((0,...,0),0), where 0 C {1,... ,n} and o is a
spanning tree of the network N.

Since there is one-to-one correspondence between the standard pairs ((0,...,0),*) of O¢
and the vertices of dual polyhedron of the minimum cost flow problem, Algorithm 2.3 for the
minimum cost flow problem IP4 ¢(b) is a variant of the enumeration of dual feasible bases.

Example 2.2 (continued.) Figure 8 shows the dual polyhedron Pe of the minimum cost flow
problems for ¢ with ¢; + c3 > cs.
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Figure 3: The dual polyhedron Pe of the minimum cost flow problems for the network N in
Example 2.2

4 Arithmetic degree of acyclic directed graphs

In the case that the network is the acyclic tournament graph, the minimum and maximum
arithmetic degrees can be obtained using some results about Grobner bases and hypergeometric
functions. When the network is an acyclic directed graph, these results give upper and lower
bounds for the arithmetic degree. Since each standard pair of the minimum cost flow problem
corresponds to the vertex of the dual polyhedron for the linear relaxation of the minimum cost
flow problem, these results also give upper and lower bounds for the number of vertices of the
dual polyhedron. In this section we show that, for the acyclic tournament graph with d vertices,
the minimum arithmetic degree is 1 and the maximum arithmetic degree is 5(2(‘;!__11)), which is
the (d — 1)-Catalan number.

We assume that the vertices of acyclic directed graph have labels 1,... ,d such that each
edge (7, 7) is oriented from the vertex i to the vertex j. We denote ¢;; the cost of the edge (i, 7)
and z;; the variable corresponds to the edge (¢, 7). The number of edges equals n = (g)

4.1 Minimum arithmetic degree of acyclic tournament graphs

We remark again that the genericity of ¢ implies that, the arithmetic degree of O¢ is equal to
or greater than 1. We show that there exists a cost vector ¢ for which the arithmetic degree
equals 1 for any d.

Theorem 4.1 For the acyclic tournament graph with d vertices, the minimum arithmetic de-
gree of O¢ which ¢ varies in all generic cost vectors equals 1.

To show this theorem, we use a characterization of one Ne.

Lemma 4.2 When ¢ = (c;ij)1<icj<a Satisfies that c;; > ;41 + Civ1iq2 + -+ + ¢j_1; for any
1 <j—1, then Ne = Ui<]._1(ei]- + Nn) C N™.

Proof: In [8], we showed that reduced Grébner basis Ge for I, with respect to the above ¢ is
{zij — Tijr1Tiz1i42- - 2145 | 1 <i<j—1<d—1}. Especially, the set of initial terms of G¢
equals {z;; | 1 <7 <j—1<d— 1}, which implies that Ne¢ = U;; ,(e;; +N"). [

Proof of Theorem 4.1: Because of Lemma 4.2, @ = (aij)1<i<j<a € N" is in O¢ for ¢ as in
Lemma 4.2 if and only if a;; = 0 for any (¢, 7) such that j —4 > 1. The set of all such points
coincides ((0,...,0),{(1,2),(2,3),...,(d —1,d)}). Thus only this pair is a standard pair of
Oc. O



4.2 Maximum arithmetic degree of acyclic tournament graphs

To show the maximum arithmetic degree, we use another integer programming problem defined
from the original integer programming problem. For a general matrix A € Z%*", we define
another matrix A’ € Z(@+1)x(n+1) 55

( 11 --- 1 1
A = 0
: A .
\ 0

(1 1 1 1

0

- a ay --- a, °‘: ’ )
0

Let @} = (, ) for 1 <i < n and a/,,; be the n + 1-th column vector of A’. We remark that
ai,...,a,,a,  span an affine hyperplane.
We define another family P4 (¢, of integer programming problems

50 )

IPy e (b, B) :== minimize {c -z £ N L

(En+1)

as (g) varies in {A'u | w € N**'}. Similarly as Og, let O{¢ ) C N**! be the set of all optimal
solutions to all programs in I Py (¢ ), and N('c,o) = Nt Ozc,o)-

The next proposition is obtained by the result for general monomial ideals[12], but here we
directly show using the properties of toric ideals.

Proposition 4.3 (a,0) (a € N*, ¢ C {1,...,n}) is a standard pair of O¢ if and only if
((COL),O' U{n+ 1}) is a standard pair of Ozc,o)-

Proof: We first show that (a,0) C Oc if and only if (($),c U {n+1}) C O{c,)- Suppose that
(a,0) C Oc and choose any (¥) € ((9),0U{n+1}). If there exist any other v € N and
non-negative integer [ such that A’ (zl’) =A (1,:’) and (’ll’) # ('2"), then Au = Av,and c-u < c-v
since u € O¢. Therefore, (1,:) is the optimal solution to I P4 (¢ 0)(Aw, 5) with 8 =>"" , u; + k.
If there does not exist such (1;), then clearly (1,:) is the optimal for this integer programming
problem. This shows that (($),0cU{n+1}) C Olc,0)-

Conversely, suppose that ((?),a U{n+ 1}) C O(c,o) and choose any u € (a,0). If there
exists some v € N" such that Av = Au, then A’ (":) =A ('lq’) for any non-negative integers p, ¢
such that p—g = >"" , v;—> ., u;. Then e-u < ¢-v because (g) € (($),cu{n+1}) C Ol
and (¢,0) - (1;) < (e,0) - ("q)) Therefore, u is the optimal solution to IP4 c(Au). If there does

not exist such v, then clearly w is the optimal for this integer programming problem. Thus
(a, O') Q Oc.
If ((9),0 U {n +1}) is a standard pair of Ol g then ($),0u{n+1}) ¢ ((%’I),T U{n+ 1})

for any other ((%’) ,TU{n + 1}) which satisfies the conditions (i) and (ii) in Definition 2.1 for
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O(c)- Since if (a,0) C (a’,7) for any other (a',7) which satisfies (i) and (ii) in Definition 2.1
for Og¢, then ((‘01),0 U{n + 1}) must be contained in ((%’I),T U{n+ 1}), which contradicts

the assumption. Thus (a,o) is a standard pair of Oe.
On the other hand, if ((%),a U{n+ 1}) is not a standard pair of Ozc,o)a then there exists

some ((f),T’) such that ((C]:I),T'> contains ((9),0U {n+1}) and (((Zl),’i"> satisfies (i) and
(i) in Definition 2.1 for Of¢ ). Then n+1 € 7, and therefore k = 0 by (i) in Definition 2.1.

Therefore, (a’, 7) where 7 := 7'\ {n+1} contains (a, o) and satisfies (i) and (ii) in Definition 2.1.
Thus (a,0) is not a standard pair of O¢. This completes the proof. [

Example 2.2 (continued.) For this A, enlarged matriz A’ is

1 1 1 1
, [ 1 1 0 o
A= 0 1 o0
0 -1 -1 0

For ¢ with ci+c3 > ¢, the standard pairs of O(¢ ) are ((0,0,0,0),{1,2,4}) and ((0,0,0,0),{2,3,4}).
On the other hand, for ¢ with c¢; 4 c3 < co, the standard pairs of Ozc,o) are ((0,0,0,0),{1,2,3})
and ((0,0,0,0),{1,3,4}). In this case, the only standard pair ((0,0,0,0),{1,3,4}) satisfies the
condition in Proposition 4.3, which corresponds to the standard pair ((0,0,0),{1,3}) of Oec.

Theorem 4.4 For the acyclic tournament graph with d vertices, the mazximum arithmetic de-
gree of O¢ which ¢ varies in all generic cost vectors equals

Gy i 1(2(dd_—11)>7

which is the (d — 1)-th Catalan number.

To show this theorem, we prepare some lemmas. The first is by Gelfand et al. [5] which
studies about some hypergeometric function.

Lemma 4.5 ([5]) Let A’ be the enlarged matriz (2) for the incidence matriz A of the acyclic
tournament graph with d vertices, and conv(A') be the convex hull of ai,... ,a;_ . Then the
normalized volume of conv(A') equals the (d — 1)-th Catalan number Cyq_;.

Given a regular triangulation A{¢ ;) of conv(A’), the normalized volume of conv(A') equals
the sum of normalized volume for all maximal faces in A'(c,k)- Since the column vectors in
ay,...,a, , span an affine hyperplane, the normalized volume of conv(A’) gives the number
of standard pairs of O ;) which correspond to the maximal faces of A{¢ ;) by Lemma 2.3 (iii).

Lemma 4.6 When ¢ = (cij)1<i<j<d Satisfies that

® c;j +cjr > ci, forany i < j <k and
® ci+cjy > cy+cj foranyi <j<k<l,



then
Ne= |J (ej+ew)+NYU |  ((ew+en)+N)C N

1<i<j<k<d 1<i<j<k<I<d

Proof: In [8], we showed that reduced Grobner basis G¢ for I4 with respect to the above ¢ is
{a:,-jxjk — Tk | 1<« ] <k< d} U {xikxﬂ — TjaZjk | 1<y <j <k<l< d} Especially, the
set of initial terms of G equals {z;;zj; | 1 <i<j <k <d}U{zpz;|1<i<j<k<l<d},
which implies that Ne = U<, jr<a((€ij + €x) + N ) U U ;i parca((ein + €5) + N O

Proof of Theorem 4.4: Because of Proposition 3.3, any standard pair of O¢ is ((0,...,0),0)
for any e, and corresponds to the standard pair ((0,...,0,0),0U{n+1}) of Olc,)- Especially,
o U{n + 1} is a maximal face of A(¢ . Therefore,

arith-deg (Oc) = [{((0, ) 0) € §(Oc)}|
= [{((o,... aU{n+1})€S(O )}
< ZH *,T) € S c0 }‘ (3)

= normahzed volume of conv(A’)

= Ca

where the sum in (3) is taken over all maximal faces 7 of A(¢p).

Because of Proposition 3.3 and Lemma 4.6, for ¢ as in Lemma 4.6 ((0, ... ,0),0) is a standard
pair of O¢ if and only if ¢ is a spanning tree of the acyclic tournament graph which satisfies
the following two conditions:

(A) there are no 1 <i < j < k < d such that both (i,5) and (4, k) are edges in o, and
(B) there are no 1 < i < j < k <l <d such that both (i, k) and (j,1) are edges in o.

The number of spanning trees of the complete graph with d vertices which satisfies (A) and
(B) are known to be equal to the (d — 1)-th Catalan number (e.g. see [9]). O

We remark that the Catalan number equals fnS/Z (1+0(2)) (e.g. see [3]).

Example 2.2 (continued.) ¢ = (3,1,2) gives an ezample achieving the mazimum arithmetic
degree since Cy = %(3) = 2. On the other hand, ¢ = (1,4,2) gives an example achieving the
minimum arithmetic degree.

4.3 Arithmetic degree of acyclic directed graphs

Since any acyclic directed graph G with d vertices can be seen as the subgraph of acyclic
tournament graph G with same number of vertices by deleting some edges, the incidence matrix
A of G is a submatrix of that A of G by deleting the columns which correspond to the deleted
edges. Let A’ (resp. A') be the enlarged matrix (2) of A (resp. A). Then the normalized
volume of conv(A') is equal to or less than that of conv(A), which implies that the arithmetic
degree for TP, ¢ for any cost vector c is equal to or less than the maximum arithmetic degree
for the acyclic tournament graph, which is the (d — 1)-th Catalan number.



5 Conclusion

In this paper, we showed the bounds for the number of vertices of the dual polyhedra for the
minimum cost flow problems on the acyclic directed graphs, using the results from Grobner
bases and hypergeometric functions. We also showed two examples for the acyclic tournament
graphs, one achieves the minimum arithmetic degree 1, and the other achieves the maximum
arithmetic degree C;_;.

On the other hand, the arithmetic degrees for cyclic directed graphs are not known. Similar
approach may be able to attack to this analysis, which should be a future work.
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