
Modal Logics for Coalgebras – A Survey

Ichiro HASUO∗

Department of Mathematical and Computing Sciences,

Tokyo Institute of Technology.

hasuo2@is.titech.ac.jp, http://www.is.titech.ac.jp/˜hasuo2

August 2003

Abstract

The notion of coalgebra is an abstraction of state-based systems such as automata, labelled transition systems
and Kripke models. It has proved that in order to state about behaviors of coalgebras, some kinds of modal logics
are useful. This survey is to summarize several different ways of defining such modal languages.

1 Introduction

The notion of coalgebra is an abstraction of state-based systems, such as automata, labelled transition systems
and Kripke models. We can give some properties common in them:

• Behaviors of the system depends on its internal state which is, however, invisible to the user (the black-box
view).

• The system is reactive, not necessarily terminating, and interacts with its environment.

• The system comes with a set of operations, through which this interaction takes place.

The notion of coalgebras offers a general theory to consider a large class of such systems.
What is also interesting about coalgebras is that the notion is the dual of the well-known structure algebra,

hence many results and insights in the well-studied area of universal algebra can be applied to the theory of
coalgebras.

To state about algebras, we usually make usage of equational logic. For coalgebras it has proved that some
kinds of modal languages are useful,1 and several authors have introduced different ways to obtain modal lan-
guages for coalgebras. This survey is to summarize those approaches.

In the second section, we make a brief review on basic notions around coalgebras, accompanied with some
examples of coalgebras. The third section is an introduction to modal logics for coalgebras. There we do not go
into concrete modal languages, but we will see what modal logics for coalgebras are all about, and two desirable
properties of modal logics for coalgebras, namely adequacy and expressivity, and two desirable properties of
proof systems for those logics, namely soundness and completeness, are introduced. In the remaining sections
we summarize some authors’ approaches to modal logics for coalgebras and compare them with one another.

There are a number of research topics involving coalgebras; introductions and pointers to literatures can be
found in [19], [10] and [15].

∗This report was written during the author’s stay at Laboratory for Verification and Semantics, National Institute of Advanced Industrial
Science and Technology, Japan (AIST).

1“Modal logic is to coalgebras what equational logic is to algebras” [10].

1

2 Coalgebras and other basic notions

The materials in this section are mostly from [4], which is based on [15].

2.1 Coalgebras and morphisms

Definition 2.1 (Coalgebras) Let C be a category, T : C → C an endofunctor on C. A T -coalgebra is a pair of a
C-object C and a C-arrow γ : C → TC, i.e. (C, γ). T is said to be its signature functor or type, C its carrier, C

its base category and γ its transition map or coalgebraic structure.

In this paper our focus is set on coalgebras whose base category is Set. Later we will make usage of some
properties unique to Set, such as another characterization of accessibility of functors.

Definition 2.2 (Morphisms of coalgebras) Let (C, γ) and (D, δ) be T -coalgebras, and f : C → D a C-arrow.
f is said to be a morphism of T -coalgebras or T -morphism, if δ ◦ f = Tf ◦ γ, i.e. the following diagram of C

commutes.

C
f
- D

TC

γ
?

Tf
- TD

δ
?

We see by the functoriality of T that:

• an identity arrow is a morphism;

• composition of two morphisms is again a morphism.

Hence T -coalgebras and T -morphisms again forms a category, which we denote by CoAlg(T).

Example 2.3 (Stream Automata) A stream automaton is a very simple machine, with only a button and a dis-
play. One letter is indicated on the display every time the button is pressed down.

Such a class of machines can be formalized as follows, at first sight. Let L be a (fixed) set of letters that can
be on the display. Then a stream automaton is nothing but a triple2

〈S, hd : S → L, tl : S → S〉

where S is a nonempty set of its internal states, and on pressing the button with the machine’s state s ∈ S, we see
hd(s) on the display, and the state now changes into tl(s).

S

L ¾
pr1

¾

hd

L× S

〈hd, tl〉
?

pr2
- S

tl

-

By taking a Cartesian product, we can now regard this as a coalgebra

(S, 〈hd, tl〉 : S → L× S)

2hd is for “head” and tl is for “tail”, as an observation later shows.

2

for the signature functor3

TX := L×X,

Tf := L× f = idL × f.

Again at first sight we can define a morphism of stream automata as follows:

Let 〈S, hd, tl〉 and 〈S′, hd, tl〉 be stream automata with a common set of outputs L, and f : S → S ′.
f is a morphism if for every s ∈ S,

hd(s) = hd
′ ◦ f(s),

f ◦ tl(s) = tl
′ ◦ f(s).

This exactly coincides with the definition of morphisms of coalgebras, i.e.

〈hd
′, tl′〉 ◦ f(s) = (idL × f) ◦ 〈hd, tl〉(s).

Example 2.4 (Labelled transition systems) A labeled transition system with the set of actions (or labels) L is
formalized as a pair of the set of states S and the three-place relation R ⊆ S × L × S, i.e. 〈S,R〉. This can be

rewritten as 〈S, (
l
→)l∈L〉, where

l
→ is a binary relation defined by

s
l
→ s′ iff (s, l, s′) ∈ R.

Now using the trick of ‘relation into function’, we obtain a coalgebraic formulation of labelled transition
system. Define σ : S → P(L× S) by

σ(s) := {(l, s′) ∈ L× S | (s, l, s′) ∈ R, i.e. s
l
→ s′},

then a labelled transition system (S, σ) is a coalgebra for the signature functor

TX := P(L×X),

T f := P(L× f),

where, for g : A→ B, Pg : PA→ PB is defined by

(Pg)(a) := g[a] = (the direct image of a by g).

Example 2.5 (Kripke models) A Kripke model for a set of atomic formulas A is a triple 〈S,R, V 〉, where S is
the set of possible worlds (or states), R (⊆ S × S) is an accessibility relation, and V : A→ PS is a valuation of
atomic formulas (V (a) is the set of states where a is true).

Again by making a similar trick as above, we obtain a coalgebraic formalization of Kripke models. For a
Kripke model 〈S,R, V 〉, define next : S → PS and prop : S → PA by:

next(s) := {s′ ∈ S | sRs′} = (states that are possibly the next of s),

prop(s) := {a ∈ A | s ∈ V (a)} = (formulas true at s).

3The identity arrow idA associated to A is often denoted by A itself.

3

Taking a Cartesian product,
(S, 〈next, prop〉 : S → PS × PA)

is a coalgebra for the signature functor

TX := PX × PA,

Tf := Pf × PA.

Consider a morphism of Kripke models, which are now considered as T (= P id × PA)-coalgebras. Let
(S, 〈next, prop〉) = 〈S,R, V 〉 and (S ′, 〈next′, prop′〉) = 〈S′, R′, V ′〉 be Kripke models, and f : S → S ′.
Relaxing the above definition, we obtain that f is a morphism (w.r.t. T -coalgebras) iff for every s ∈ S,

• prop(s) = prop′ ◦ f(s), that is,

– for every a ∈ A, s |=〈S,R,V 〉 a iff f(s) |=〈S′,R′,V ′〉 a, and

• f [next(s)] = next′ ◦ f(s), that is,

– s1Rs2 implies f(s1)R
′f(s2), and

– if f(s1)R
′s′2, then there exists s2 ∈ S such that s1Rs2 and f(s2) = s′2,

which is nothing but the condition of p-morphism or pseudo epimorphism [20].

2.2 Behavioral equivalence and bisimilarity

As stated in the introduction, the theory of coalgebras is to study such systems whose internal states we users
cannot see, but whose outputs (or behaviors) we can see. Hence we are concerned with not a state itself, but a
class of states which share the same behaviors, i.e. an equivalence class modulo a certain relation.

There are two candidates for the relation: behavioral equivalence [9] and bisimilarity. It is noted again that
the base category is supposed to be Set in this paper.

Definition 2.6 (Behavioral equivalence) Let (C, γ) and (D, δ) be T -coalgebras, c ∈ C and d ∈ D. c and d
are behaviorally equivalent, which is denoted by c ≈ d, if there exist a T -coalgebra (E, ε) and T -morphisms
f : (C, γ) → (E, ε), g : (D, δ) → (E, ε) such that f(c) = g(d).

(C, γ) (D, δ)

(E, ε)
¾

gf
-

Definition 2.7 (Bisimilarity) Let (C, γ) and (D, δ) be T -coalgebras, and B ⊆ C × D a binary relation on C
and D. B is said to be a bisimulation if there exists a transition map β : B → TB which makes the projections
pr1 : B → C and pr2 : B → D both T -morphisms.

(B, β)

(C, γ)
¾

pr 1

(D, δ)

pr
2
-

c ∈ C and d ∈ D are bisimilar if for some bisimulation B, cBd.

4

It is not trivial that behavioral equivalence is an equivalence relation in fact; the question is in its transitivity.
It is easily shown that if the base category has pushouts then so does the category of T -coalgebras and morphisms
(the forgetful functor preserves pushouts, moreover). This is the case here since Set has pushouts. Then the
transitivity of behavioral equivalence is easily established using pushouts.4

Having established that behavioral equivalence is actually an equivalence relation, it is easy that bisimilarity
yields behavioral equivalence. Moreover, if the signature functor T preserves weak pullbacks [19], then the
converse also holds, i.e. behavioral equivalence exactly coincides with bisimilarity.5

The definition of behavioral equivalence seems natural if we think of a morphism as behavior-preserving
map, and since it is the more general notion6 we will mainly work with it.

Example 2.8 (Behavioral equivalence of stream automata) Given a stream automaton (S, 〈hd, tl〉) and a state
s ∈ S, it seems obvious that the behavior of s is the stream of letters

(hd(s), hd ◦ tl(s), hd ◦ tl ◦ tl(s), . . .)

which will appear in pressing the button repeatedly. Hence we obtain a mapping of a state into its behavior,
beh(S,〈hd,tl〉) : S → Lω , given by beh(S,〈hd,tl〉)(s) := (hd ◦ tl

n(s))n∈ω , where tl
n(s) := tl ◦ tl

n−1(s) is defined
inductively.

B

A B

A

The above figure designates one stream automaton, each circle being a state, and each arrow designating transi-
tion. It is easy to see that both states labelled withA are behaviorally equivalent, with theie behaviorsA,B,A,B,
On the other hand, those labelled with B are not.

Now it is easy to verify that

If f : (S, 〈hd, tl〉) → (S′, 〈hd
′, tl′〉) is a morphism of stream automata, then beh(S,〈hd,tl〉)(s) =

beh(S′,〈hd′,tl′〉) ◦ f(s).

Hence if two states s ∈ (S, 〈hd, tl〉) and s′ ∈ (S′, 〈hd
′, tl′〉) are behaviorally equivalent in the sense defined above

(s ≈ s′), then beh(S,〈hd,tl〉)(s) = beh(S′,〈hd′,tl′〉)(s
′).

Here is another easy observasion; the set of all streams over the alphabet L forms a stream automaton. Defin-
ing

hd
ω((an)n∈ω) := a0, and

tl
ω((an)n∈ω) := (an+1)n∈ω,

(Lω, 〈hd
ω, tlω〉) is a stream automaton. Moreover, for every stream automaton (S, hd, tl), beh : (S, hd, tl) →

(Lω, 〈hd
ω, tlω〉) is a morphism. Hence if two states s ∈ (S, 〈hd, tl〉) and s′ ∈ (S′, 〈hd

′, tl′〉) share the same
behavior in common in the sense that beh(S,〈hd,tl〉)(s) = beh(S′,〈hd′,tl′〉)(s

′), then s ≈ s′, with (Lω, 〈hd
ω, tlω〉)

their confluence.
The two observations establish that s ≈ s′ iff beh(S,〈hd,tl〉)(s) = beh(S′,〈hd′,tl′〉)(s

′).

Example 2.9 (Behavioral equivalence in Kripke models) For Kripke models which are thought of as (P id ×
PA)-coalgebras, behavioral equivalence coincides with bisimilarity which is defined above, and moreover with
bisimilarity in its original form introduced in [21]. For the proof see [15].

4See e.g. [4].
5The proof is easy, taking a pullback as a bisimulation.
6Examples where behavioral equivalence is in fact the more appropriate is given in [9].

5

2.3 Simplicity, extensivity and finality

Definition 2.10 (Simple coalgebra, extensive coalgebra) A T -coalgebra (C, γ) is simple if for all c, c′ ∈ C,
c ≈ c′ implies c = c′. It is also said to satisfy the coinduction proof principle, in the sense that to show that two
states are equal, we have only to show that they are behaviorally equivalent. A simple coalgebra is one without
any redundant internal states.

(C, γ) is extensive if for every T -coalgebra (D, δ) and d ∈ D, there exists c ∈ C such that c ≈ d. We can say
that an extensive coalgebra has every possible behavior (as to T) in it.

A coalgebra which is both simple and extensive can be thought of as a system consisting of all possible
behaviors. What is interesting is that this property can be stated in purely category-theoretical terms.

Definition 2.11 (Final coalgebra) (C, γ) is final if it is the final (or terminal) object in the category CoAlg(T),
i.e. for each T -coalgebra (D, δ) there exists exactly one morphism from (D, δ) to (C, γ).7

The proofs for claims in this subsection can be found in [4].

Proposition 2.12 A coalgebra (Z, ζ) is both simple and extensive, if and only if it is final.

Example 2.13 (Stream automata) For stream automata, i.e. T -coalgebras with T = L× id, (Lω, 〈hd
ω, tlω〉) is

the final coalgebra.

Theorem 2.14 (Lambek’s lemma) For the final T -coalgebra (Z, ζ), ζ : Z → TZ is a bijection.

In the above we have not mentioned whether the final coalgebra for a signature functor T actually exists or
not; the theorem gives a negative example.

Corollary 2.15 There is no final P-coalgebra, where P is the powerset functor.

2.4 Terminal sequence

Under some condition on the signature functor, we can establish the existence of the final T -coalgebra. For the
proof we use the notion of terminal sequence, whose α-th object T α1 designates the set of all behaviors that can
appear in α-step transitions. Moreover, it also gives rise to the proof method called induction along the terminal
sequence, which we will use again and again later.

Definition 2.16 (Terminal sequence)

1 ¾
!

T1 ¾
T !

T 21 ¾
T 2!

· · · ¾
Tα−1!

Tα1 ¾
Tα!

· · ·

Let T be an endofunctor on Set. The terminal sequence associated with T is a transfinitely long sequential
diagram in Set, consisting of Set-objects T α1 for every ordinal α and Set-arrows ζα

β : Tα1 → T β1 for all
ordinals β ≤ α, satisfying

• ζβ
γ ◦ ζα

β = ζα
γ for all γ ≤ β ≤ α, and

• ζα+1
β+1 = Tζα

β for all β ≤ α.

7Of course, the final coalgebra is unique up to isomorphism.

6

Intuitively ζα
β (β ≤ α) maps an α-step behavior to its prefixing β-step behavior.

We can construct the terminal sequence for every endofunctor T ; the detailed construction is described in [4].

Proposition 2.17 A T -coalgebra (C, γ) induces a cone (C, (γα : C → Tα1)α∈Ord) over the terminal sequence
associated with T .

The map γα : C → Tα1 maps a state c ∈ C to its behavior within α-step transitions.

Example 2.18 (Stream automata) For stream automata over an alphabet L, which is thought of as (L × id)-
coalgebras, the terminal sequence associated with L× id is as follows:

1 ¾
!

L ¾
L×!

L2 ¾
L2×!

· · · ¾
Ln−1×!

Ln ¾
Ln×!

· · ·

where the arrow ζn
m (m ≤ n) maps an n-length word over L to its m-length prefix. Given a stream automaton

(C, γ = 〈hd, tl〉), it induces a cone (C, (γα : C → Tα1)α∈Ord). Here the arrow γn : C → Tn1 (= Ln) maps
c ∈ C to (hd(c), hd ◦ tl(c), . . . , hd ◦ tl

n−1(c)).

Using the terminal sequence, we can establish the existence result of the final coalgebra, if the type T is
accessible. The notion of accessibility is usually defined in terms of filtered colimits; however, since our focus
here is on endofunctors on Set, we can go another way.

Definition 2.19 (Accessibility) Let κ a regular cardinal, and T : Set → Set. T is said to be κ-accessible if:

for every set X and every t ∈ TX , there exists xt ⊆ X such that #xt < κ and t ∈ (Ti)[T xt],8 where
i : xt → X is the inclusion map.

T is accessible if it is κ-accessible for some κ.

Intuitively, a functor is accessible if its action on a large set can be determined by that on small subsets.

Theorem 2.20 (Existence of final coalgebra) If T is accessible, then there exists the final T -coalgebra.

Proof. The key observation is as follows. If T is κ-accessible, then the arrow ζκ+1
κ : Tκ+11 → Tκ1 in the

terminal sequence is monic. Taking its left inverse ζ : T κ1 → Tκ+11 (= T (T κ1)), we obtain the final coalgebra
(Tκ1, ζ). Again the detailed proof is found in [4].

We can extract a proof principle from the proof of the above theorem:

Theorem 2.21 (Induction along the terminal sequence) Let T : Set → Set be a κ-accessible functor, (C, γ),
(D, δ) T -coalgebras, c ∈ C and d ∈ D. Then the following are equivalent:

1. c ≈ d;

2. !C(c) =!D(d), where !C : (C, γ) → (Z, ζ) is the morphism to the final coalgebra uniquely determined by
the finality, and so is !D;

3. for all α < κ, γα(c) = δα(d), where (C, (γα : C → Tα1)α∈Ord) is a cone over the terminal sequence
induced by the T -coalgebra (C, γ), and so is (D, (δα : D → Tα1)α∈Ord).

The proof of Theorem 2.20 implies that for κ-accessible type T only behaviors within κ steps make sense; the
condition 3. says that c and d have the same behavior in common within κ steps. If we are to establish c ≈ d,
then it suffices to show that γα(c) = δα(d) for all α < κ by transfinite induction.

8Note that f [−] denotes a direct image.

7

3 Modal logics for coalgebras

Modal languages have proved to be useful for specification languages for behaviors of coalgebras. This idea
easily comes to our mind if we consider coalgebras as a generalization of Kripke models. In this section we
describe what modal logics for coalgebras are all about, and some properties which a modal language, or a proof
system for it, is expected to possess. Here we do not stick on one certain language.

Let L be a modal language for T -coalgebras, which is the collection of modal formulas. Several of those
will be introduced in the next section.9 A modal formula in L is interpreted in a T -coalgebra; that is, given a
T -coalgebra (C, γ) and a modal formula φ of L, we define the semantics of φ in (C, γ) as a subset of C, denoted
by JφK(C,γ), which is the collection of states of C where φ is true. We put c |=(C,γ) φ for c ∈ JφK(C,γ). We omit
subscripts (C, γ) if no confusion comes about.

Given a modal language (or syntax) L and its interpretation in T -coalgebras, there are two properties which
they are expected to enjoy, when we take L for a specification language for T -coalgebras and moreover we adopt
the black-box view as to coalgebras, i.e. we are concerned with their behaviors rather than their internal states.
Many authors call those properties in different ways. Here we will follow the terminology in [15].

Definition 3.1 (Adequacy, expressivity) Suppose that L be a modal language for T -coalgebras and JφK(C,γ) (⊆
C) be defined for every φ ∈ L and every T -coalgebra (C, γ).

L is said to be adequate if behavioral equivalence yields logical equivalence; that is, for c ∈ (C, γ) and
d ∈ (D, δ) with c ≈ d, c |=(C,γ) φ iff d |=(D,δ) φ for all φ ∈ L.

L is said to be expressive if the converse holds, i.e. every two states which are logically equivalent with
respect to L are behaviorally equivalent.

The adequacy of L means that L (the logical equivalence w.r.t. L, to be precise) is not too fine, and it does not
distinguish behaviorally equivalent states. On the other hand, the expressivity of L means that L is fine enough,
distinguishing the smallest difference in behaviors of coalgebras. We can say that, for L to be a specification
language, L must be adequate, and it is better if L is expressive. The case seen here is like what is seen about
soundness and completeness of a proof system.

In most cases the adequacy of L is shown by means of the following lemma:

Lemma 3.2 Suppose that the following holds as to a modal language L for T -coalgebras and its semantics J K:

Let f : (C, γ) → (D, δ) be a morphism of T -coalgebras and φ ∈ L. Then for every c ∈ C,
c |=(C,γ) φ iff f(c) |=(D,δ) φ; or equivalently, JφK(C,γ) = f−1(JφK(D,δ)).

Then L is adequate.

Proof. Let c ∈ (C, γ) and d ∈ (D, δ) be behaviorally equivalent, having T -morphisms f : (C, γ) → (E, ε) and
g : (D, δ) → (E, ε) with f(c) = g(d). Then the assumption yields that c |= φ iff f(c) |= φ iff g(d) |= φ iff
d |= φ for every φ ∈ L, hence c and d are logically equivalent.

On the other hand, to prove expressivity the following lemma which makes usage of induction along terminal
sequence will often prove to be useful. Let T be a κ-accessible endofunctor on Set. Consider the terminal
sequence associated with T , with ζκ

α : Tκ1 → Tα1 an arrow in it. Here ζκ
α can also be considered as an arrow

in the cone over the terminal sequence induced by the final T -coalgebra (Z, ζ), in the way of Proposition 2.17
(Note that we can assume Z = T κ1).

Lemma 3.3 Let T be a κ-accessible endofunctor on Set, and L a modal language for T -coalgebras which is
adequate. Suppose that for each α < κ and z ∈ T α1 we have a formula φα

z ∈ L which satisfies Jφα
z K(Z,ζ) =

(ζκ
α)−1({z}) where (Z, ζ) and ζκ

α are as described above. Then L is expressive.

9In fact, one of those introduced in the next section does not obey the custom of modal languages; an argument of its modal operator is
not a formula, but what is obtained by, so to speak, lifting a formula by the type T .

8

Proof. Take two states c ∈ (C, γ) and d ∈ (D, δ) of T -coalgebras which are not behaviorally equivalent. It
suffices to give a formula φ ∈ L such that c |= φ and d 6|= φ. Let !(C,γ) : (C, γ) → (Z, ζ) the unique arrow into
the final T -coalgebra and so is !(D,δ). Then the adequacy of L yields that c and !(C,γ)(c) are logically equivalent
and so are d and !(D,δ)(d). Hence we can assume that c and d are both states in (Z, ζ).

The proof principle of induction along the terminal sequence (Theorem 2.21) shows that c 6≈ d with c, d ∈
(Z, ζ) implies the existence of α (< κ) such that ζκ

α(c) 6= ζκ
α(d). Take φ := φα

ζκ
α(c). Then by the assumption

JφK(Z,ζ) = (ζκ
α)−1({ζκ

α(c)}), to which c belongs but d does not.

Once we have obtained a modal language L for T -coalgebras (which must be adequate and is expected to be
expressive), we are then concerned with a proof system (which we denote by Π here) for L, which will deduce
only valid formulas, and preferably every valid formulas. The first property is called soundness, and the second
completeness.

Definition 3.4 (Soundness, completeness) A proof system Π is said to be sound if every formula φ deduced by
Π is valid, that is, JφK(C,γ) = C for every T -coalgebra (C, γ). Π is said to be complete if every valid formula in

L can be deduced by Π.

We will denote by |=(C,γ) φ the fact that a formula φ is valid in a T -coalgebra (C, γ). If φ is valid in every
T -coalgebra, we will put just |=T φ.

In the following sections we will introduce some approaches taken by different authors, and summarize them,
considering

• the class of Set-endofunctors which each method can handle;

• how syntax and semantics are given;

• the results on adequacy or expressivity;

• whether a proof system is given or not, and if it is, the results on its soundness or completeness.

The order of appearance is basically in accordance with the historical development. Remark that notations which
appear in each section is ad hoc, valid only in that very section.

4 Moss’s coalgebraic logic

[12] discusses a generalization of infinirary modal logic to a logic for coalgebras, which he calls coalgebraic
logic. Here we will follow the line presented in [15] which makes usage of induction along the terminal sequence
for the expressivity result.

Its syntax, as is already mentioned, does not follow the custom of standard modal languages in which a
modality is a unary operator whose argument is a formula. The language Lα

T is parametrized by the signature
functor T and the degree of conjunction α.

Definition 4.1 (Syntax) Let T be a Set-endofunctor and α a regular cardinal. The language Lα
T is defined by the

following inductive BNF definition:
Lα

T 3 φ ::=
∧

Φ | ∇t

where Φ ⊆ Lα
T , #Φ < α and t ∈ T (Lα

T).

The definition can be put differently as follows. Consider the α-bounded powerset functor Pα : Set → Set
defined by:

9

PαX := {x ⊆ X | #x < α};
Pαf : PαA → PαB

a 7→ f [a]

where f : A → B. And let the functor L := Pα + T . Then Lα
T is nothing but the carrier set of the initial

L-algebra, with its structure map [
∧

,∇] : PαL
α
T + TLα

T → Lα
T . In this section we are concerned only with an

accessible functor T (Definition 2.19), which makes L also accessible and hence yields the existence of the initial
L-algebra, i.e. the validity of the above definition. It is notable that the language cannot be even defined in this
way for the covariant powerset functor P , which is not accessible.

It is noted that Lα
T is an infinitary language unless α = ω, and > :=

∧

∅ is a formula in Lα
T .

It seems to be the key of Moss’s approach that the behavior of the next state is designated in terms of the
functor application to Lα

T , and in order to give its semantics, we consider extending T and applying it to relations,
not only to sets or functions.

Definition 4.2 (Relator) The category Rel is that of sets and relations, i.e. its object is a (small) set and its arrow
is a relation between sets. An identity arrow is given by the diagonal relation, i.e.

idS = 4S = {(s, s) | s ∈ S}.

Set can be embedded into Rel by taking the graph Gf of each function f .
A relator is an endofunctor on Rel.
Let T : Set → Set and T̂ : Rel → Rel both functors. A relator T̂ is said to be the extension of T if T̂ S = TS

for each small set S and T̂Gf = GTf for each function f : A→ B, where Gf is an Rel-arrow from A to B (not a
Rel-object as a subset of A×B).

We use the extention of the signature functor T to a relator in order to give semantics. The following theorem,
due to [2], ensures that it is possible:

Theorem 4.3 Let T : Set → Set. T can be extended to a relator if and only if T preserves weak pullbacks. In
that case, the extension T̂ of T is given by:

T̂R = GTπ2
◦ (GTπ1

)op,

where R : A→ B is a Rel-arrow, π1 : R→ A and π2 : R→ B are projections (here R is thought of as a subset
of A×B). −op designates the converse of a relation. In other words,

T̂R = {(Tπ1(t), Tπ2(t)) ∈ TA× TB | t ∈ TR},

where TR is a functor T applied to a Set-object R.

In fact, the word relator is used by different authors in different ways. Another application of the notion of relator
in a coalgebraic setting can be found in [18]. The book [1] gives a good insight and examples of applications to
algebraic approaches to programming.

Proposition 4.4 Let T be a Set-endofunctor which preserves weak pullbacks, hence the extension of T to a
relator is given by T̂ (R) = GTπ2

◦ (GTπ1
)op as above. Then T̂

• preserves converse, i.e. T̂ (Rop) = (T̂R)op;

• is order-preserving, i.e. if R ⊆ S for Rel-arrows R and S, then T̂R ⊆ T̂ S.

The semantics in a T -coalgebra (C, γ) is now given by the universal arrow from the initial L(= Pα + T)-
algebra (Lα

T , [
∧

,∇]) to an L-algebra which is induced by (C, γ) in terms of the extension of T to a relator:

10

Definition 4.5 (Semantics) Let T be an accessible Set-endofunctor which preserves weak pullbacks, and (C, γ)
a T -coalgebra. We have an extension T̂ of T to a relator. Let an L-algebra (PC, [d, e]) given by

d : PαPC → PC
C 7→

⋂

c∈C c

e : TPC → PC

t 7→ {c ∈ C | (γ(c), t) ∈ T̂∈C}

where ∈C (⊆ C × PC) is the membership relation of C, conceived as a Rel-arrow from C to PC.
Then the semantics J K(C,γ) of Lα

T in (C, γ) is defined by the unique morphism ofL-algebras from (Lα
T , [
∧

,∇])
to (PC, [d, e]), which maps a formula φ to JφK(C,γ).

PαL
α
T

PαJ K(C,γ)

- PαPC

LLα
T

LJ K(C,γ)

-

-

LPC
¾

TLα
T

T J K(C,γ)

-

¾

TPC

-

Lα
T

[
∧

,∇]

?

J K(C,γ)

-

¾
∇

PC

[d, e]

?

e -

∧

d

Proposition 4.6 Suppose that the semantics J K(C,γ) in (C, γ) is given for the language Lα
T . Then

c |=(C,γ)

∧

Φ iff c |=(C,γ) φ for all φ ∈ Φ,

c |=(C,γ) ∇t iff (γ(c), t) ∈ T̂ |=(C,γ),

where T̂ |=(C,γ) is a relator T̂ applied to a Rel-arrow |=(C,γ) from C to Lα
T .

Proof. The first clause immediately follows from the commutativity J K(C,γ) ◦
∧

= d ◦ PαJ K(C,γ).
For the second, the key observation is that |=(C,γ)= (GJ K(C,γ)

)op ◦ ∈C as a Rel-arrow, which yields that

T̂ (|=(C,γ)) = (GT J K(C,γ)
)op ◦ T̂∈C by the functoriality of T̂ . Now suppose c |=(C,γ) ∇t, which is equivalent

to c ∈ e ◦ (T J K(C,γ))(t). This is rewritten as (γ(c), (T J K(C,γ))(t)) ∈ T̂∈C by the definition of e, hence the

observation establishes the claim.

Example 4.7 (Stream automata) Consider stream automata over an alphabet L which can be thought of as
(T = L× id)-coalgebras. Then T is ω-accessible which preserves weak pullbacks. Here we are concerned with
the language Lω

T and its semantics.
Relaxing the definition, we obtain the BNF definition of a formula in Lω

T :

Lω
T 3 φ, ψ ::= φ ∧ ψ | ∇(l, φ),

where l ∈ L.
Given a stream automaton (C, 〈hd, tl〉), c |=(C,〈hd,tl〉) ∇(l, φ) iff ((hd(c), tl(c)), (l, φ)) ∈ T̂ (|=(C,〈hd,tl〉)

) by the proposition above. It is equivalent to say that there exists some (l′, (c′, φ′)) ∈ T (|=(C,〈hd,tl〉)) =
L× |=(C,〈hd,tl〉) such that (Tpr1)(l

′, (c′, φ′)) = (hd(c), tl(c)) and (Tpr2)(l
′, (c′, φ′)) = (l, φ). Since T = L× id,

this means that l′ ∈ L, c′ |=(C,〈hd,tl〉) φ
′, (idL × pr1)(l

′, (c′, φ′)) = (hd(c), tl(c)) and (idL × pr2)(l
′, (c′, φ′)) =

(l, φ). Hence we have established that: c |=(C,〈hd,tl〉) ∇(l, φ) iff hd(c) = l and tl(c) |=(C,〈hd,tl〉) φ.

11

Adequacy of the language Lα
T is easy using Lemma 3.2.

Theorem 4.8 (Adequacy) The language Lα
T is adequate with respect to T -coalgebras.

Proof. It suffices to show that J K(C,γ) = f−1 ◦ J K(D,δ) for a morphism f : (C, γ) → (D, δ). By the definition
of J K as a universal arrow from the initial algebra, we need only to show that f−1 : PD → PC is a morphism of
(L = Pα +T)-algebras from (PD, [d′, e′]) to (PC, [d, e]) which are induced by T -coalgebras (D, δ) and (C, γ),
respectively. Hence we are to show that e ◦ T (f−1) = f−1 ◦ e′ and d ◦ T (f−1) = f−1 ◦ d′. Both are shown
by easy calculation; for the first the key is that Gf−1 ◦ ∈D ◦ Gf ⊆ ∈C , (Gf−1)op ◦ ∈C ◦ (Gf)op ⊆ ∈D, and T̂ is

order-preserving (Proposition 4.4).

Lα
T becomes expressive if α is no less than the accessibility of T ;

Theorem 4.9 (Expressivity) Let T be a κ-accessible Set-endofunctor which preserves weak pullbacks. Then the
language Lκ

T is expressive.

Proof. It suffices to give a formula φα
z for each ordinal α < κ and each z ∈ Tα1 such that Jφα

z K(Z,ζ) =
(ζκ

α)−1({z}) where (Z, ζ) is the final T -coalgebra and ζκ
α : Z → Tα1 (Lemma 3.3). The definition is by

transfinite induction. In the following ζκ
α is also designated by ζα.

For a limit ordinal α, let φα
z :=

∧

β<α φ
β

ζα
β

(z). It is easy seen that this formula satisfies the condition.

For a successor ordinal α = β + 1, by the induction hypothesis, we have a map f : T β1 → Lκ
T such that for

each w ∈ T β1, Jf(w)K(Z,ζ) = ζβ
−1({w}), i.e. J K(Z,ζ) ◦ f = (ζβ)−1 ◦ {·}β where {·}β : T β1 → PT β1 maps

w to the singleton {w}. We define φβ+1
z := ∇(Tf(z)). Then, (here ∈Z is the membership relation, a Rel-arrow

from Z to PZ)

u ∈ J∇Tf(z)K(Z,ζ) iff u ∈ e ◦ T J K(Z,ζ) ◦ Tf(z)

iff (ζ(u), T (ζ−1
β ◦ {·}β)(z)) ∈ T̂∈Z J K(Z,ζ) ◦ f = (ζβ)−1 ◦ {·}β

iff (ζ(u), z) ∈ (GT (ζ−1
β

◦{·}β))
op ◦ T̂∈Z

iff (ζ(u), z) ∈ T̂ ((Gζ−1
β

◦{·}β
)op ◦ ∈Z) T̂ extends T

iff (ζ(u), z) ∈ T̂Gζβ
= GTζβ

(Gζ−1
β

◦{·}β
)op ◦ ∈Z = Gζβ

iff z = Tζβ ◦ ζ(u)

iff u ∈ (ζβ+1)
−1({z}), ζβ+1 = Tζβ ◦ ζ

hence we have Jφβ+1
z K(Z,ζ) = (ζβ+1)−1({z}).

For now it seems that no proof systems or general frameworks for giving proof systems have been introduced.
We conclude this section by summarizing the above observations in the following table:

Signature functor accessible and preserves weak pullbacks

Syntax Lα
T 3 φ ::=

∧

Φ | ∇t, where Φ ⊆ Lα
T , #Φ < α and t ∈ T (Lα

T)

Adequacy holds

Expressivity holds, if the degree of conjunction is no less than

the accessibility of the signature functor

12

5 Logics designed for specific signatures

5.1 Overview

Another kind of approaches are introduced in [11], [17] and [16]; they are focused on rather small classes of
signature functors, for which coalgebras do not jump far from Kripke models. Hence many of the results on
expressivity or completeness of proof systems are obtained by transferring the results in the well-studied area of
standard modal logics and Kripke semantics. Here modal languages and proof systems are designed through a
syntactical investigation of a signature functor.

[11] considers signature functors of the form

T = (E1 +O1 × id)I1 × · · · × (En +On × id)In .

A functor of this form can be thought of as representing the number and the types of methods of a class in object-
oriented languages. Then a coalgebra for the functor is a class equipped with this type of methods, and a state of
a coalgebra is an object of the class.

[17] considers the cases where signatures are polynomial functors inductively defined by

T1, T2 ::= id | C | T1 + T2 | T1 × T2 | TE
1 ,

where E is a set and C is a constant functor mapping any set to a set C. [16], in addition, considers Kripke
polynomial signature functors defined by

T ::= (polynomial functor) | PT,

which now includes the functor Pid × PA, the signature of Kripke models over the set of atomic formulas A.
In all of the three papers above modal languages and their semantics are given in a concrete way by inves-

tigating signatures syntactically, the results on adequacy and expressivity are established,10 and complete proof
systems are presented. The proofs for the completeness of proof systems are basically based on the well-known
method of canonical model construction, where maximal consistent sets of formulas make up the set of possible
worlds. In the latter two papers by Rößiger the method is modified to construct a canonical coalgebra, whose
state is a maximal consistent set. Moreover in [17], hence for (not Kripke) polynomial functors, it is shown that
a canonical coalgebra coincides with a final coalgebra; this observation leads to another characterization (which
is functional) of final coalgebras.

5.2 Kurz, 2001 TCS

In the rest of this section we take a glance at a method taken in [11], which is the most simple among the three
but suffices to show the essence common in them.

The signatures considered here is of the form

T = (E1 +O1 × id)I1 × · · · × (En +On × id)In ,

where all of Ek, Ok and Ik are all constant functors which can be thought of as the set of error messeges, outputs,
and inputs of the k-th method, respectively.

Example 5.1 (Buffers) Consider a buffer over the set L which have two methods, store and read. Let S be
the set of its internal states, then the two methods are formalized as functions

store : L× S → S, read : S → {error} + L× S,

where, if s is the state which designates that the buffer is empty, then read(s) = error. Hence a buffer is a
coalgebra for the signature functor T = idL × ({error} + L× id).

10Since the languages given are finite, when considering Kripke polynomial functors expressivity holds only for image-finite coalgebras.
In the other cases where the powerset functor P is not considered, a coalgebra is always image-finite, hence it seems natural that we obtain
the expressiveness result in view of the result by Hennessy and Milner.

13

The language, denoted by LT , is parametrized only by a signature functor. It is noted that functors considered
here are all ω-accessible.

Definition 5.2 (Syntax) Let T = (E1+O1× id)I1 ×· · ·×(En +On× id)In . The language LT for T -coalgebras
is given by the following inductive BNF definition:

LT 3 φ, ψ ::= ⊥ | φ→ ψ | (k, i) = a | [k, i]φ,

where k ∈ [1, n], i ∈ Ik and d ∈ Ek + Ok. Boolean connectives are defined as usual in terms of ⊥ and →.
〈k, i〉φ is an abbreviation for ¬[k, i]¬φ.

LT is a finitary multi-modal language whose atomic formula is of the form (k, i) = a and whose modality is
given by [k, i] for each k ∈ [1, n] and i ∈ Ik.

The semantics for LT is given in terms of the relation |=(C,γ), which can immediately be translated to the
definition of J K(C,γ):

Definition 5.3 (Semantics) Given a T -coalgebra (C, γ), the relation |=(C,γ) between an element of C and a
formula in LT is defined inductively by:

c 6|=(C,γ) ⊥;

c |=(C,γ) φ→ ψ iff c 6|=(C,γ) φ or c |=(C,γ) ψ;

c |=(C,γ) (k, i) = a iff (prk ◦ γ(c))(i) = a;

c |=(C,γ) [k, i]φ iff (prk ◦ γ(c))(i) ∈ Ek or pr2((prk ◦ γ(c))(i)) |=(C,γ) φ.

(k, i) = a is read as the output of the k-th method with an input i is a, and [k, i]φ as the updated object (or the
next state) produced by the k-th method with an input i, if it exists, satisfies a formula φ. Note that if the k-th
method with an input i outputs an error message, then [k, i]φ is true for every formula φ; this follows the custom
of standard modal logic where 2 is read as in all the next states ... It immediately follows from the definition that
c |=(C,γ) 〈k, i〉> iff (prk ◦ γ(c))(i) 6∈ Ek, and c |=(C,γ) [k, i]⊥ iff (prk ◦ γ(c))(i) ∈ Ek.

Example 5.4 (Buffers) Example 5.1 shows that a buffer over L can be thought of as a T -coalgebra where T =
idL × ({error} + L × id). For them the language is given by atomic propositions (read) = a where a ∈

{error} + L, and modalities [store, l] and [read] where l ∈ L.

Theorem 5.5 (Adequacy) The language LT is adequate.

Proof. It suffices to show that validity of formulas is invariant under morphisms (Lemma 3.2); this is easy by the
induction on the construction of formulas.

The expressivity result is obtained using the translation of a T -coalgebra into a Kripke model and applying
the result [3], [7] as to Kripke models with Hennessy-Milner property.

Theorem 5.6 (Expressivity) The language LT is expressive.

A complete proof system for LT is given considering a T -coalgebra as a Kripke model which satisfies several
extra conditions, i.e. by adding some extra axioms to the normal modal logic K. Here we assume an extra
condition on the signature functor T .

14

Definition 5.7 (Proof system) Let T = (E1 +O1 × id)I1 × · · · × (En +On × id)In be a Set-endofunctor such
that each of E1, O1, . . . , En, On is a finite set, and LT the language for T -coalgebras. A proof system ΠT is
given by the following axioms and rules, as a Hilbert-style system:

(Taut) all Boolean tautologies
(K) [k, i](φ→ ψ) → ([k, i]φ→ [k, i]ψ)
(Err) (k, i) = e→ [k, i]⊥ for all k ∈ [1, n], i ∈ Ik and e ∈ Ek

(Suc) (k, i) = o→ 〈k, i〉> for all k ∈ [1, n], i ∈ Ik and o ∈ Ok

(USuc) 〈k, i〉φ→ [k, i]φ
(UOP) (k, i) = a→ ¬((k, i) = a′) for all k ∈ [1, n], i ∈ Ik, a, a′ ∈ Ek +Ok and a 6= a′

(EOP)
∨

a∈Ek+Ok

(k, i) = a

A→ B A
B

(MP)
φ

[k, i]φ
(Nec)

We put ΠT ` φ if a formula φ ∈ LT is deduced by the axioms and rules above.

(Taut), Kripke’s axiom (K), modus ponens (MP) and necessitation (Nec) together form the normal (multi-)modal
logic K. The intension of each of the other axioms is as follows. (Err) is to designate that if the output is an error
message, then no updated object (or the successor state) comes about. (Suc) is that, otherwise, there exists an
updated object. It is noted that (Suc) is equivalent to the axiom

(k, i) = o→ ([k, i]φ→ 〈k, i〉φ)

since 3> ↔ (2φ → 3φ) in the normal modal logic K. (USuc) is that the successor state is unique, if it exists.
(UOP) is that the value of the output, whether it is an error message or not, is unique. (EOP) is for the existence
of the output. To make the proof system finitary, we must have #(Ek +Ok) <∞.

Soundness of the system ΠT is easy by induction.

Theorem 5.8 (Soundness) ΠT is sound with respect to T -coalgebras.

Completeness is shown by translating the result on standard modal logic and Kripke models, which is obtained
by the canonical model construction with maximal consistent sets its possible worlds.

Theorem 5.9 (Completeness) ΠT is complete with respect to T -coalgebras.

6 Modalities induced by predicate liftings

6.1 Overview

The other approach, which is first introduced in [8] and developed in e.g. [14] or [13], defines modal languages
by means of predicate liftings, a notion which appears in the context of fibrations.11 The method presented in
this section considers a large class of signature functors, including P which Moss’s approach cannot handle, and
the syntax follows the custom of standard modal languages. The modal languages and proof systems introduced
here are parametrized by many parameters, and the results on expressivity or completeness are given in the form
that if the language/system is given in the good manner, i.e. the parameters satisfy certain conditions, then
expressivity/completeness holds.

The section follows the line presented in [15].

11What we are interested in can be stated in terms of the fibration SubSet → Set; the definition of predicate liftings for this specific
fibration can be put differently and more easily, which we adopt in the following. The use of predicate liftings in the theory of coalgebra is
first presented in [6].

15

6.2 Predicate liftings

Definition 6.1 (Predicate lifting) Let T be an endofunctor on Set. A predicate lifting λ for T is a family of
Set-arrows (λX : PX → PTX)X∈Set which:

• is order-preserving, i.e. x ⊆ x′ ⊆ X implies (λX)(x) ⊆ (λX)(x′) ⊆ TX;

• is compatible with inverse images, i.e. for an arbitrary Set-arrow f : X → Y , (Tf)−1 ◦λY = λX ◦f−1.12

PY
λY
- PTY

PX

f−1

?

λX

- PTX

(Tf)−1

?

In other words, λ is an order-preserving natural transformation from P to PT , where P is the contravariant
powerset functor.

Informally, a predicate lifting λ translates a predicate in X (i.e. a subset of X) into a predicate of TX , with
respect to a certain aspect. The following examples may be illustrative:

Example 6.2 (Predicate liftings for T = L× id) Note that a T -coalgebra is a stream automaton over the alpha-
bet L.

We can define a predicate lifting λ for T by

λX : PX → PTX
x 7→ { (l′, x′) ∈ TX | x′ ∈ x}

It is easily verified that λ is indeed a predicate lifting. So to speak, λ extracts the aspect of location.
Another predicate lifting λl can be defined for each l ∈ L, by

(λl)X : PX → PTX
x 7→ { (l′, x′) | l′ = l}

λl extracts which letter is displayed.

Example 6.3 (Predicate liftings for T = Pid × PA) A T -coalgebra is a Kripke model over the set of atomic
formulas A.

We can define a predicate lifting λ for T by

λX : PX → PTX
x 7→ {(x′, a) ∈ TX | x′ ⊆ x}

λ extracts the aspect of location.
Another predicate lifting λa can be defined for each a ∈ A, by

(λa)X : PX → PTX
x 7→ {(x′, a) ∈ TX | a ∈ a}

λa extracts the aspect of satisfaction of a. Note that (λa)X is a constant map.

12This amounts to say that λ is a natural transformation P ⇒ PT , where P is considered as a contravariant functor which maps f : A →

B to Pf := f−1 : PB → PA.

16

The above two examples motivate two principles for obtaining predicate liftings, which is due to Pattinson:

Proposition 6.4 Let µ : T ⇒ P be a natural transformation, where P is covariant. We obtain a predicate lifting
λ for T by

λX(x) := {t ∈ TX | (µX)(t) ⊆ x}.

Again λ defined in this way is focused on the location.

Proposition 6.5 Let a ⊆ T1. We obtain a predicate lifting λa by

(λa)X(x) := {t ∈ TX | (T !X)(t) ∈ a}.

Again λaX is a constant map. T1 can be considered as the set of behaviors observable in a one-step transition,
hence the map T !X : TX → T1 extracts the aspects which are independent from X .

In the following we will introduce a modality induced by a predicate lifting λ; this correspond to 2. And
we will put 〈λ〉 for ¬[λ]¬ just as we put 3 for ¬2¬. The modality 〈λ〉 actually has the corresponding predicate
lifting, too.

Proposition 6.6 Let λ be a predicate lifting for T , and ¬λ¬ be defined by

(¬λ¬)X(x) := TX \ (λX)(X \ x).

Then ¬λ¬ is again a predicate lifting for T .

Proof. Use the fact that inverse images preserves negations.

6.3 Syntax, semantics, adequacy and expressivity

A functor T , a class Λ of predicate liftings for T and a regular cardinal κ give rise to a multi-modal language
Lκ(Λ) for T -coalgebras.

Definition 6.7 (Syntax) A language Lκ(Λ) associated with Λ is defined by

Lκ(Λ) 3 φ ::=
∧

Φ | ¬φ | [λ]φ,

where Φ ⊆ Lκ(Λ), #Φ < κ and λ ∈ Λ.

In short, Lκ(Λ) is an infinitary multi-modal language which admits conjunction of less than κ formulas and each
modality induced by λ ∈ Λ. Note that > :=

∧

∅ is a formula.
To interpret a modality [λ] we make use of the predicate lifting λ.

Definition 6.8 (Semantics) Let (C, γ) be a T -coalgebra and φ ∈ Lκ(Λ). The semantics JφK(C,γ) is defined
inductively by the following clauses:

J
∧

ΦK :=
⋂

φ∈Φ

JφK;

J¬φK := C \ JφK;

J [λ]φ K := γ−1 ◦ λC(JφK).

17

Intuitively, the formula [λ]φ is read as after one step of transition φ holds with respect to λ. This idea is reflected
in the definition above; being φ (denoted by JφK) is translated into TC by λC (i.e. λC(JφK)), and then pulled
back along the transition map γ.

Example 6.9 (Modal language for stream automata) Consider the language Lω({λ} ∪ {λl | l ∈ L}) where λ
and λl are as defined in Example 6.2. This is a modal language for (L× id)-coalgebras. Relaxing the definition,
we have

s |=(S,〈hd,tl〉) [λ]φ iff tl(s) |=(S,〈hd,tl〉) φ,

s |=(S,〈hd,tl〉) [λl]φ iff hd(s) = l.

Example 6.10 (Modal language for Kripke models) Consider Lω({λ}∪ {λa | a ∈ A}) where λ and λa are as
defined in Example 6.3. This is a modal language for (Pid × PA)-coalgebras. Then we have

s |=(S,〈next,prop〉) [λ]φ iff s′ |=(S,〈next,prop〉) φ for all s′ ∈ next(s),

s |=(S,〈next,prop〉) [λa]φ iff a ∈ prop(s).

Hence [λ] correspond to 2, and [λa]φ to the atomic formula a.

Adequacy is easily shown using Lemma 3.2.

Theorem 6.11 (Adequacy) Lκ(Λ) is adequate.

Proof. It suffices to show that JφK(C,γ) = f−1 ◦ JφK(D,δ) for a morphism f : (C, γ) → (D, δ) and φ ∈ Lκ(Λ),

which is by induction on the construction of φ.

For expressivity, we must recall that the language is parametrized by the degree of conjunction κ and the
set of predicate liftings Λ. The larger κ is, or the richer Λ is, the more descriptive Lκ(Λ) is. Hence we are
to consider under what condition on κ and Λ the language Lκ(Λ) becomes expressive. [14] gives one answer,
namely separating property.

Definition 6.12 (Separating system of subsets) Let S a set, S ⊆ PS, and define a map b : S → PS by

b(s) := {s ∈ S | s ∈ s}.

S is said to be separating if b is an injection.

In the above, S is a system of subsets of S and b(s) is the collection of sets in S to which s belongs. S is
separating iff we can separate elements in S (i.e. distinguish an element in S) in terms of S.

Definition 6.13 (Separating system of predicate liftings) A class Λ of predicate liftings for T is said to be sep-
arating if for any set X , the system

{λX(x) | λ ∈ Λ, x ∈ PX}

is a separating system of subsets of TX .

18

Example 6.14 (Kripke models) Let T = Pid × PA, λ and λa (a ∈ A) defined by Example 6.3; that is, λ is
for the next state and λa is for the satisfaction of a. Then it is easily verified that Λ := {λ} ∪ {λa | a ∈ A} is
separating.13

Now we are to establish that if T is accessible and Λ is separating, then Lσ(Λ) is expressive for a sufficiently
large cardinal σ. This can be understood intuitively as follows. Let T be κ-accessible, which means that we have
only to see behaviors of T -coalgebras within less than κ-steps. The separating Λ gifts us with a set of modalities
which is rich enough to express one-step transition. Taking conjunction of formulas each of which expresses the
behavior within 1-step, 2-steps, ... , we obtain a formula which specifies a behavior within κ-steps.

In view of the sketch of proof stated above, it seems necessary that we can specify one element of TX by
taking intersection (which corresponds to conjunction) of the system of subsets induced by Λ. In the general
case of separating systems of subsets this is not true; consider S = {x, y} and S = {{x, y}, {y}}, where we
cannot take {x} as an intersection of sets in S. However, in this case of predicate liftings, this specification by
intersection can be done, with the help of predicate liftings ¬λ¬.

Lemma 6.15 Let X be a set, Λ a separating set of predicate liftings for T ,

Λ̄ := Λ ∪ {¬λ¬ | λ ∈ Λ},

S := {λX(x) | λ ∈ Λ̄, x ∈ PX},

b : TX → PS

t 7→ {s ∈ S | t ∈ s}

Then for all t ∈ TX , {t} =
⋂

b(t).

Proof. It is obvious that Λ̄(⊇ Λ) is also separating. We argue by contradiction.
Assume t′ ∈

⋂

b(t) and t′ 6= t. t′ ∈
⋂

b(t) immediately yields that b(t) ⊆ b(t′), and since b is monic,
b(t) (b(t′). Take λ ∈ Λ̄ and x ∈ PX such that λX(x) ∈ b(t′) \ b(t), i.e. t′ ∈ λX(x) and t 6∈ λX(x) (†).

t′ ∈ λX(x) can be rewritten as t′ 6∈ (¬λ¬)X(X \ x), i.e. (¬λ¬)X(X \ x) 6∈ b(t′), which shows (¬λ¬)X(X \

x) 6∈ b(t) by b(t) (b(t′). Hence we obtain t ∈ λX(x) which contradicts (†).

However, the lemma is not enough in that the degree of intersection (i.e. conjunction, on the logical side) is
not bounded above. Fortunately, if T is κ-accessible we can do better:

Lemma 6.16 Let T be κ-accessible, Λ separating, X a set and t ∈ TX . Then there exists xt(⊆ X) such that
#xt < κ and

{t} =
⋂

{λX(x) | λ ∈ Λ̄, x ⊆ xt, t ∈ λX(x)}.

Proof. Take xt (with the inclusion map i : xt½ X) as t ∈ (Ti)[T xt], which is possible by the accessibility of T .
We are to show that this xt satisfies the condition.

Lemma 6.15 above shows that {t} =
⋂

{λX(x) | λ ∈ Λ̄, x ⊆ X, t ∈ λX(x)}, and note that the statement can
be put as {t} =

⋂

{λX(x∩xt) | λ ∈ Λ̄, x ⊆ X, t ∈ λX(x∩xt)}. The order-preserving property of predicate liftings
yields λX(x ∩ xt) ⊆ λX(x), hence it suffices to show that for every x ⊆ X , if t ∈ λX(x) then t ∈ λX(x ∩ xt).

Let s ∈ T xt be such that t = (Ti)(s). Then (Ti)(s) ∈ λX(x) i.e. s ∈ (Ti)−1 ◦ λX(x), hence by the
compatibility of predicate liftings s ∈ λxt ◦ i

−1(x). Using i−1(x) = i−1(x ∩ xt) and going up along the same
argument, we have t ∈ λX(x ∩ xt).

Theorem 6.17 (Expressivity) Let T be κ-accessible, Λ separating and σ a regular cardinal which is: σ > #Λ,
and σ > 2α for all α < κ. Then the modal language Lσ(Λ) is expressive.

13Nevertheless, the separating property of Λ does not imply expressivity since T is not accessible.

19

Proof. We construct a formula φα
z for each α < κ and z ∈ Tα1 in Lemma 3.3, and then use the lemma.

For a limit ordinal α, z ∈ Tα1 can be written as z = (zβ)β<α by the set-theoretical characterization of the
limit Tα1. Take φα

z as

φα
z :=

∧

β<α

φβ
zβ
.

Then by the induction hypothesis Jφα
z K(Z,ζ) =

⋂

β<α ζ
−1
β (zβ), which is equal to ζ−1

α ({z}).
For a successor ordinal α = β + 1, apply Lemma 6.16 to z ∈ T (T β1) and obtain bz ⊆ T β1 such that:

#bz < κ and
{z} =

⋂

{λT β1(b) | λ ∈ Λ̄, b ⊆ bz, z ∈ λT β1(b)}.

Let Bλ := {b ⊆ bz | z ∈ λT β1(b)} and B′
λ := {b ⊆ bz | z ∈ (¬λ¬)T β1(b)} for each λ ∈ Λ. Then the

equation above can be put as

{z} =

[

⋂

λ∈Λ

⋂

b∈Bλ

λT β1(b)

]

∩

[

⋂

λ∈Λ

⋂

b∈B′
λ

(¬λ¬)T β1(b)

]

.

Now let

φα
z :=

[

∧

λ∈Λ

∧

b∈Bλ

[λ]

(

∨

b∈b

φ
β
b

)]

∧

[

∧

λ∈Λ

∧

b∈B′
λ

〈λ〉

(

∨

b∈b

φ
β
b

)]

.

This is admitted to be a formula in Lσ(Λ) since σ is larger than #Λ, #Bλ and #b, and it is easy to see that
Jφα

z K(Z,ζ) = ζ−1
α ({z}).

The degree of intersection σ in the theorem seems much larger than κ; however, even finitary modal languages
are expressive in some settings:

Corollary 6.18 If T is ω-accessible and Λ is a separating set of predicate liftings with #Λ < ω, then Lω(Λ) is
expressive.

If T is well-behaved in the sense defined below, we can reduce σ to κ.

Definition 6.19 (Intersection preserving predicate lifting) A predicate lifting λ for T is intersection preserv-
ing if for any set X and any X ⊆ PX ,

λX(
⋂

X) =
⋂

x∈X

λX(x).

Λ is intersection preserving if so is every λ ∈ Λ.

Proposition 6.20 Predicate liftings defined by the principles in Proposition 6.4, 6.5 are intersection preserving.

Proof. Easy.

Theorem 6.21 Let T be κ-accessible, Λ separating, intersection preserving and #Λ < κ. Then the modal
language Lκ(Λ) is expressive.

Proof. We modify the proof of Theorem 6.17, reducing the degree of conjunction or disjunction. The problem
lies in defining φα

z for a successor ordinal α.
By the intersection preserving property of λ ∈ Λ, we have

⋂

λ∈Λ

⋂

b∈Bλ

λT β1(b) =
⋂

λ∈Λ

λT β1(
⋂

Bλ),

20

and since, as easily seen, ¬λ¬ preserves unions for intersection preserving λ, we have
⋂

λ∈Λ

⋂

b∈B′
λ

(¬λ¬)T β1(b) =
⋂

λ∈Λ

⋂

b∈B′
λ

⋃

b∈b

(¬λ¬)T β1({b})

=
⋂

λ∈Λ

⋂

{b}∈B′
λ

(¬λ¬)T β1({b}).

Hence we can define

φα
z :=

[

∧

λ∈Λ

[λ]

(

∨

b∈
T

Bλ

φ
β
b

)]

∧

[

∧

λ∈Λ

∧

{b}∈B′
λ

〈λ〉φβ
b

]

,

which is a formula in Lκ(Λ) since #
⋃

Bλ and #
⋃

B′
λ are smaller than κ.

Example 6.22 (Finitely branching labelled transition systems) LetL be a finite set of labels and T := Pω(L×
id), where Pω is the powerset functor bounded by ω. Then a T -coalgebra is a finitely branching labelled transition
system with the set of labels L.

Consider a natural transformation µl : T ⇒ P for each l ∈ L defined by

(µl)X((li, xi)i∈[1,n]) := {xi | li = l}.

Then the principle presented in Proposition 6.4 induces a predicate lifting λl for each l ∈ L. The modality [λl] is

quite natural in that c |=(C,γ) [λl]φ holds iff c′ |=(C,γ) φ holds for all c′ ∈ C such that c
l
→ c′.

Now it is easy to see that T is ω-accessible, Λ := {λl | l ∈ L} separating and #Λ < ω, hence Corollary 6.18
yields the expressivity of Lω(Λ); this re-proves the result in [5] in the coalgebraic framework.

6.4 Proof system, soundness and completeness

Now we are concerned with proof systems for the modal logics introduced in the previous subsection. [13]
introduces results on soundness and completeness of proof systems which

• are parametrized by a set of axiom schema, and

• handle only one-step transitions, i.e. axiom schema do not have nesting modalities,

under certain conditions on a set of axiom schema.
The conditions under which soundness or completeness holds are rather complicated, so here we present only

the sketch of the results and the proofs for them.
We are focused only on finitary modal languages (which, of course, may fail to be expressive).
The key is that both validity of a formula (denoted by |= φ) and deducibility by the system of a formula

(denoted by ` φ) can be decomposed into n-step versions of each. For example, if the degree of nesting modalities
in a formula φ is n, then φ refers only to behaviors within n-step transitions, hence we can know the validity
of φ by the n-step validity (denoted by |=n φ). For deducibility, the decomposition into n-step versions is
possible since axiom schema refer only to one-step transitions, and the deducibility of φ whose degree of nesting
modalities is n is reduced to the n-step deducibility of φ (denoted by `n φ).

Then the results on completeness and soundness are given in the form that if the set of axiom schema is
sound/complete as to one-step transitions, then the proof system is sound/complete. The proofs are made by
showing |=n φ iff `n φ for every n ∈ ω, using induction on n.

It may seem that the statement be tautological; if the system is sound/complete, then it is sound/complete.
However, at least in an example presented by Pattinson it really works. In the example a proof system for the
language Lω({λ} ∪ {λa | a ∈ A}) as given in Example 6.10 is introduced, the set of axiom schema is shown

21

to be sound and complete with respect to one-step transitions (which is considerably easy), and then the results
are applied to obtain soundness and completeness of the system. This provides another proof (by induction) for
Kripke-completeness of normal modal logic K. It is obvious that this method cannot be applied to modal logics
such as S4, with nesting modalities in their axiom schema.

Acknowledgement

This report was written during the author’s stay at Laboratory for Verification and Semantics, National Institute of
Advanced Industrial Science and Technology, Japan (AIST). He is grateful to Hiroshi WATANABE for making
the stay possible and a lot of invaluable comments, Dirk PATTINSON for a series of instructive lectures on
coalgebras at NASSLLI 2003, Izumi TAKEUTI for advising the author to visit AIST, and last but not least, Ryo
KASHIMA for his supervision.

References

[1] Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1997.

[2] A. Carboni, G.M. Kelly, and R.J. Wood. A 2-categorical approach to change of base and geometric mor-
phisms I. Technical Report 90-1, Department of Pure Mathematics, University of Sydney, 1990. ISSN
1033-2359.

[3] Robert Goldblatt. Saturation and the Hennessy-Milner property. In A. Ponse, M. de Rijke, and Y. Venema,
editors, Modal Logic and Process Algebra, volume 53 of CSLI Lecture Notes. Center for the Study of
Language and Information, Stanford University, 1995.

[4] Ichiro Hasuo. Modal logics for coalgebras. manuscript, July 2003.
http://www.is.titech.ac.jp/˜hasuo2.

[5] Matthew Hennessy and Robin Milner. On observing nondeterminism and concurrency. In J.W. de Bakker
and J. van Leeuwen, editors, Automata, Languages and Programming, 7th Colloquium, volume 85 of Lec-
ture Notes in Computer Science, pages 299–309. Springer-Verlag, 1980.

[6] Claudio Hermida and Bart Jacobs. Structural induction and coinduction in a fibrational setting. Information
and Computation, 145:107–152, 1998.

[7] Marco Hollenberg. Hennessy-Milner classes and process algebra. In A. Ponse, M. de Rijke, and Y. Venema,
editors, Modal Logic and Process Algebra, volume 53 of CSLI Lecture Notes. Center for the Study of
Language and Information, Stanford University, 1995.

[8] Bart Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Theoretical Informatics and
Applications, 35(1):31–59, 2001.

[9] Alexander Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis, Universität
München, April 2000.

[10] Alexander Kurz. Coalgebras and modal logic. Lecture notes of ESSLLI 2001, 2001.
http://www.helsinki.fi/esslli/.

[11] Alexander Kurz. Specifying coalgebras with modal logic. Theoretical Computer Science, 260(1-2):119–
138, 2001.

[12] Lawrence S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317, 1999.

22

[13] Dirk Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local consequence.
Theoretical Computer Science, to appear, 2003.

[14] Dirk Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame Journal of
Formal Logic, to appear, 2003.

[15] Dirk Pattinson. An introduction to the theory of coalgebras. Lecture notes of NASSLLI 2003, 2003.
http://www.indiana.edu/˜nasslli/.

[16] Martin Rößiger. Coalgebras and modal logic. In Horst Reichel, editor, Coalgebraic Methods in Computer
Science (CMCS 2000), volume 33 of Electronic Notes in Theoretical Computer Science, 2000.

[17] Martin Rößiger. From modal logic to terminal coalgebras. Theoretical Computer Science, 260:209–228,
2001.

[18] J.J.M.M. Rutten. Relators and metric bisimulations. In B. Jacobs, L. Moss, H. Reichel, and J. Rutten, editors,
Coalgebraic Methods in Computer Science (CMCS ’98), volume 11 of Electronic Notes in Theoretical
Computer Science, pages 1–7, 1998.

[19] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249:3–80, 2000.

[20] Krister Segerberg. An essay in classical modal logic. Filosofiska Studier, 13, 1971.

[21] Johan van Benthem. Modal Correspondence Theory. PhD thesis, University of Amsterdam, 1976.

23

