Computing in the Jacobian of a C_{34} curve

Soondug Kim, Yasuo Morita *

1 Introduction

In recent years, certain algebraic curves, for example elliptic curves and hyperelliptic curves, are drawing attention in applications to cryptography. To use algebraic curves in cryptography, we require a fast algorithm on addition in the Jacobian. In elliptic curve cryptosystems, a point of the Jacobian can be uniquely represented by a point of the curve. In hyperelliptic curve cryptosystems, a point of the Jacobian can be uniquely represented by Mumford's form, and the known algorithms on computing in the Jacobian use Mumford's form. S. Miura found a family of algebraic curves named C_{ab} curves, which include elliptic curves and hyperelliptic curves, and S. Arita provided an algorithm on addition in the Jacobian of a C_{ab} curve.

Algebraic curves of large genus suffer efficient attacks such as function sieves and their variants. The genus of a C_{34} curve is 3, and it is the smallest genus of a non-elliptic, non-hyperelliptic C_{ab} curve. For this reason, we study C_{34} curves. Especially, we study the addition in the Jacobian of a C_{34} curve.

In this paper, for a C_{34} curve defined over a perfect field, we give a unique representation on the points of the Jacobian by normal divisors. Further, we express a normal divisor by the reduced Groebner basis with respect to the C_{ab} order for the corresponding ideal of K[X, Y]. Such an ideal is called a normal ideal. We give a condition of a polynomial subset to be a reduced Groebner basis for a normal ideal, and we give an explicit expression of the reduced Groebner basis for a given normal ideal. We give the reduced Groebner basis for the normal ideal corresponding to the normal divisor which is linearly equivalent to -D for a given normal divisor D. Finally, we study the sum of normal divisors.

Throughout this paper, K denotes a perfect field and \overline{K} denotes the algebraic closure of K.

^{*}Yasuo Morita: Mathematical Institute, Tohoku University

2 Preliminaries

In this section, we review the Jacobian of an algebraic curve and C_{ab} curves.

2.1 Jacobian of an algebraic curve

Let *C* be a plane curve defined over *K* and let K(C) denote the function field of *C*. Then the divisor group Div(C) of *C* is defined to be the free abelian group generated by the points of *C*. Thus a divisor $D \in \text{Div}(C)$ is a formal sum $D = \sum_{P \in C} n_P P$ with $n_P \in \mathbb{Z}$ and $n_P = 0$ for all but a finite number of $P \in C$. The degree of a divisor $D = \sum_{P \in C} n_P P$ is defined by deg $D = \sum_{P \in C} n_P$. The divisors of degree 0 form a subgroup $\text{Div}^0(C) = \{D \in \text{Div}(C) \mid \text{deg } D = 0\}$ of Div(C). Let the Galois group $G_{\overline{K}/K}$ act on Div(C) as $D^{\sigma} = \sum_{P \in C} n_P P^{\sigma}$. Then *D* is defined over *K* if and only if $D^{\sigma} = D$ for all $\sigma \in G_{\overline{K}/K}$. We denote by $\text{Div}_K(C)$ the group of divisors defined over *K* and put $\text{Div}_K^0(C) = \text{Div}^0(C) \cap \text{Div}_K(C)$. A divisor $D \in \text{Div}(C)$ is principal if it has the form $D = (f) = \sum_{P \in C} \text{ord}_P(f)P$ for some $f \in \overline{K}(C)^*$, where $\text{ord}_P(f)$ denotes the order of f at *P*. The set of principal divisors of *C* forms a subgroup of $\text{Div}^0(C)$. Two divisors D_1 and D_2 are linearly equivalent if $D_1 - D_2$ is principal, and it is denoted as $D_1 \sim D_2$. The Jacobian group of *C*, denoted J(C), is the quotient group of $\text{Div}^0(C)$ by the subgroup of principal divisors. The invariant subgroup $J_K(C)$ of J(C) under the action of $G_{\overline{K}/K}$ is called the Jacobian group of *C* defined over *K*.

A divisor $D = \sum_{P \in C} n_P P$ is said to be effective if each $n_P \ge 0$. We write $\sum_{P \in C} n_P P \ge \sum_{P \in C} m_P P$ if $n_P \ge m_P$ holds for any P. For a divisor $D = \sum_{P \in C} n_P P$, $D^+ = \sum_{n_P > 0} n_P P$ and $D^- = \sum_{n_P < 0} (-n_P) P$ are the zero divisor and the pole divisor of D, respectively. For a divisor D defined over K, we set

$$L(D) := \{ f \in K(C)^* \mid (f) \ge -D \} \cup \{ 0 \},\$$

and we denote the dimension $\dim_K L(D)$ by l(D).

2.2 C_{ab} curves

In this subsection, we review the C_{ab} curves.

Definition 2.1 Let a and b be relatively prime positive integers. Then a C_{ab} curve defined over K is a nonsingular curve defined by F(X,Y) = 0, where F(X,Y) has the form

$$F(X,Y) = \alpha_{0,a}Y^a + \alpha_{b,0}X^b + \sum_{ai+bj < ab} \alpha_{i,j}X^iY^j \in K[X,Y]$$

for nonzero $\alpha_{0,a}, \alpha_{b,0} \in K$.

Since gcd(a, b) = 1, we have $m, n \in \mathbb{Z}$ such that am + bn = 1. Then, multiplying F(X, Y) by $\alpha_{0,a}^{(a-1)bn} \alpha_{b,0}^{-am}$ and replacing X and Y by $\alpha_{0,a}^{-(a-1)n} \alpha_{b,0}^{-n} X$ and $\alpha_{0,a}^{-(m+bn)} \alpha_{b,0}^{m} Y$, respectively, we have a simplified equation $F_1(X, Y) = 0$, where

$$F_1(X,Y) := Y^a + X^b + \sum_{ai+bj < ab} \beta_{i,j} X^i Y^j \in K[X,Y].$$

Throughout this subsection, let C be a C_{ab} curve defined by F(X,Y) = 0 with a polynomial $F(X,Y) \in K[X,Y]$. Let $R_K(C)$ denote the coordinate ring of C. Then (a) C is an absolutely irreducible algebraic curve;

(b) There exists exactly one K-rational place ∞ at infinity, which implies that the degree of ∞ is 1. Furthermore, the pole divisors of X and Y are $a \cdot \infty$ and $b \cdot \infty$, respectively; (c) For $m \in \mathbb{Z}_{\geq 0}$, $\{X^i Y^j \mod F(X,Y) \mid 0 \leq i, 0 \leq j \leq a-1, ai+bj \leq m\}$ is a basis of a vector space $L(m \cdot \infty)$ over K.

For a fixed monomial order on K[X, Y], the multidegree MD(f) of a polynomial $f = \sum_{\alpha} a_{\alpha} X^{\alpha_1} Y^{\alpha_2}$ is $\max\{\alpha = (\alpha_1, \alpha_2) \in \mathbb{Z}_{\geq 0}^2 \mid a_{\alpha} \neq 0\}$, where the maximum is taken with respect to the monomial order. For a polynomial f, we let LC(f), LM(f) and LT(f) denote the leading coefficient, the leading monomial and the leading term of f, respectively. For a nonempty subset G of K[X, Y], we let LT(G) and LM(G) denote the set of leading terms and the set of leading monomials of elements of G, respectively.

Now, we recall the definition of Groebner bases.

Definition 2.2 Fix a monomial order. A finite subset $G = \{g_1, \ldots, g_t\}$ of an ideal I in K[X,Y] is called a Groebner basis if $\langle LT(g_1), \ldots, LT(g_t) \rangle = \langle LT(I) \rangle$. In particular, a Groebner basis satisfying

(i) LC(g) = 1 for all g ∈ G,
(ii) For g ∈ G, any term of g is not in ⟨LT(G - {g})⟩
is called a reduced Groebner basis.

Fix a monomial order on K[X, Y] and let $I \neq \{0\}$ be an ideal in K[X, Y]. Then I has a unique reduced Groebner basis. Furthermore, any Groebner basis for I generates I. On division by a Groebner basis G, the remainder is uniquely determined no matter how the elements of G are listed.

We introduce the monomial order named C_{ab} order, which is of great significance in C_{ab} curves.

Definition 2.3 (C_{ab} order) Let a and b be relatively prime positive integers with a < b. For $\alpha = (\alpha_1, \alpha_2), \beta = (\beta_1, \beta_2) \in \mathbb{Z}^2_{>0}$, we write $\alpha > \beta$ if

$$a\alpha_1 + b\alpha_2 > a\beta_1 + b\beta_2$$
, or $a\alpha_1 + b\alpha_2 = a\beta_1 + b\beta_2$ and $\alpha_1 < \beta_1$

It is easily known that this monomial order corresponds to pole degrees of functions in $R_K(C)$. We use only this monomial order in this paper.

We consider representations of $J_K(C)$. Let g(C) denote the genus of C.

Definition 2.4 A divisor $D = E - n \cdot \infty \in \text{Div}_{K}^{0}(C)$ with an effective divisor E prime to ∞ and $0 \le n \le g(C)$ is called a semi-normal divisor. In particular, a semi-normal divisor $D = E - n \cdot \infty$ such that $n = \min\{n' \mid E' - n' \cdot \infty \sim D, E' \ge 0\}$ is called a normal divisor.

It is possible that a semi-normal divisor may be linearly equivalent to another seminormal divisor. But, every divisor $D \in \text{Div}_K^0(C)$ has a unique normal divisor D_n such that $D_n \sim D$. In fact, $D_n = D + (f)$ for a nonzero function $f \in L(D + m \cdot \infty)$ with the smallest integer m such that $l(D + m \cdot \infty) = 1$. In particular, for a divisor $D = D^+ - n \cdot \infty \in$ $\text{Div}_K^0(C)$, the normal divisor D' such that $D' \sim -D$ is -D + (f) for a nonzero function $f \in L(-D + m \cdot \infty)$ with the smallest integer m such that $l(-D + m \cdot \infty) = 1$. It implies that D' = -D + (f) for a nonzero function $f \in R_K(C)$ with the smallest pole degree such that $(f)^+ \geq D^+$.

The Jacobian group $J_K(C)$ is isomorphic to the ideal class group $H(R_K(C))$ of $R_K(C)$ by the isomorphism

$$\Phi : J_K(C) \longrightarrow H(R_K(C))$$
$$[E - \deg E \cdot \infty] \longmapsto [L(\infty \cdot \infty - E)],$$

where, for any class [D] in $J_K(C)$, we choose an effective divisor E which satisfies that $D \sim E - \deg E \cdot \infty$. For a divisor $D \in \operatorname{Div}_K^0(C)$ with the pole points only at infinity, we denote by I_D the ideal $L(\infty \cdot \infty - D^+)$ of $R_K(C)$.

Next, we consider the homomorphism

$$\varphi : K[X,Y] \longrightarrow R_K(C)$$

$$f(X,Y) \longmapsto f(X,Y) \mod F(X,Y).$$

It is well-known that every ideal I of $R_K(C)$ is one-to-one correspondent to an ideal $\varphi^{-1}(I)$ of K[X,Y] containing ker $\varphi = \langle F(X,Y) \rangle$. For a normal divisor $D \in \text{Div}_K^0(C)$, we call the ideal $\varphi^{-1}(I_D)$ of K[X,Y] a normal ideal of C.

For an ideal I of K[X, Y], we define $\Delta(I)$ as $\{X^i Y^j \in K[X, Y] \mid X^i Y^j \notin LM(I)\}$ and we let $\delta(I)$ denote the number of elements in $\Delta(I)$. For a subset $G = \{g_1, \ldots, g_m\}$ of K[X, Y], we define $\Delta(G)$ as $\{X^i Y^j \mid (i, j) \in \mathbb{Z}_{\geq 0}^2 - \bigcup_{i=1}^m (MD(g_i) + \mathbb{Z}_{\geq 0}^2)\}$ and we let $\delta(G)$ denote the number of elements in $\Delta(G)$. Then, for a subset $G = \{g_1, \ldots, g_t\}$ of an ideal I satisfying $\delta(I) < \infty$, G is a Groebner basis for I if and only if $\delta(I) = \delta(G)$.

Now, we quote the following, which plays an important role in this paper:

Proposition 2.5 For a divisor $D = E - n \cdot \infty \in \text{Div}_{K}^{0}(C)$ with an effective divisor E prime to ∞ , we have

 $\deg E = \delta(I),$

where I is the ideal $\varphi^{-1}(I_D)$ of K[X, Y].

3 C_{34} curves

In this section, we consider C_{34} curves. Throughout this section, let C be a C_{34} curve defined by

$$F(X,Y) := Y^{3} + \gamma_{2}(X)Y + \gamma_{3}(X) = 0$$

with $\gamma_2(X) = s_2 X^2 + s_1 X + s_0$, $\gamma_3(X) = X^4 + t_3 X^3 + t_2 X^2 + t_1 X + t_0 \in K[X]$. Then the genus of C is equal to 3.

3.1 Normal divisors

In this subsection, we give a condition for a semi-normal divisor to be a normal divisor of C. The pole divisors of X and Y in $R_K(C)$ are $3 \cdot \infty$ and $4 \cdot \infty$, respectively. It follows that:

Lemma 3.1 Let a, b, c be elements of K. Then the principal divisor (X+a) can be written as $(X+a) = P_1 + P_2 + P_3 - 3 \cdot \infty$ with $P_1, P_2, P_3 \in C$, and the principal divisor (Y+bX+c)can be written as $(Y+bX+c) = Q_1 + Q_2 + Q_3 + Q_4 - 4 \cdot \infty$ with $Q_1, Q_2, Q_3, Q_4 \in C$.

The following proposition gives a condition for a semi-normal divisor $D \in \text{Div}_{K}^{0}(C)$ to be a normal divisor.

Proposition 3.2 Let $D \in \text{Div}_{K}^{0}(C)$ be a semi-normal divisor and let $n = \deg D^{+}$. Then D is a normal divisor if and only if either (i) $0 \le n \le 2$, or (ii) n = 3 and I_{D} contains no function of the form X + a or Y + bX + c for $a, b, c \in K$.

Proof. The semi-normal divisor D is a normal divisor if and only if D is not linearly equivalent to any semi-normal divisor with a pole degree which is smaller than n.

If n = 0, then D = 0 is a normal divisor.

If n = 1 and D is not a normal divisor, then $D \sim 0$. It follows that D = (f) for some $f \in K(C)^*$. Then f is in $L(1 \cdot \infty) - L(0 \cdot \infty)$. But it is a contradiction because $L(1 \cdot \infty) - L(0 \cdot \infty) = \emptyset$.

If n = 2 and D is not a normal divisor, then $D \sim 0$ or $D \sim P - \infty$ for a point $P \in C$. First, it is impossible that $D \sim 0$, since $L(2 \cdot \infty) - L(1 \cdot \infty) = \emptyset$. Second, suppose that $D \sim P - \infty$ for $P = (x, y) \in C$. Then $D - P + \infty = (f)$ for some $f \in K(C)^*$. Since $(f) + (X - x) = D^+ + P_2 + P_3 - 4 \cdot \infty$ for $P_2, P_3 \in C$ such that $(X - x) = P + P_2 + P_3 - 3 \cdot \infty$. It follows that the function $f \cdot (X - x) \in L(4 \cdot \infty) - L(3 \cdot \infty)$. This implies that $(f \cdot (X - x)) = (Y + bX + c)$ for $b, c \in K$. Thus we have $Y + bX + c, X - x \in L(\infty \cdot \infty - (P_2 + P_3))$. It is a contradiction because there is only one line through with P_1 and P_2 , which is the tangent line if $P_1 = P_2$.

If n = 3 and D is not a normal divisor, then $D \sim 0$, $D \sim P - \infty$, or $D \sim Q_1 + Q_2 - 2 \cdot \infty$ for $P, Q_1, Q_2 \in C$. First, suppose that $D \sim 0$. Then D = (f) for some $f \in K(C)^*$. It follows that $f \in L(3 \cdot \infty) - L(2 \cdot \infty)$. This implies that (f) = (X + a), i.e. $X + a \in I_D$, for $a \in K$. Second, suppose that $D \sim P - \infty$. Then $D - P + \infty = (f)$ for some $f \in K(C)^*$. For $P = (x, y) \in C$, $(f) + (X - x) = D^+ + P_2 + P_3 - 5 \cdot \infty$ for $P_2, P_3 \in C$ such that $(X - x) = P + P_2 + P_3 - 3 \cdot \infty$. It follows that $f \cdot (X - x) \in L(5 \cdot \infty) - L(4 \cdot \infty) = \emptyset$, which is a contradiction. Last, suppose that $D \sim Q_1 + Q_2 - 2 \cdot \infty$. Then $D - Q_1 - Q_2 + 2 \cdot \infty = (f)$ for some $f \in K(C)^*$. Let g be the defining equation of the line through with Q_1 and Q_2 , which is the tangent line if $Q_1 = Q_2$. Then either g = X + a for $a \in K$ or g = Y + bX + c for $b, c \in K$. For g = Y + bX + c, we can write $(g) = Q_1 + Q_2 + Q_3 + Q_4 - 4 \cdot \infty$ for $Q_3, Q_4 \in C$. Then $(fg) = D^+ + Q_3 + Q_4 - 5 \cdot \infty$, which is a contradiction since $L(5 \cdot \infty) - L(4 \cdot \infty) = \emptyset$. Thus g = X + a. Let $(g) = Q_1 + Q_2 + Q_5 - 3 \cdot \infty$ for $Q_5 \in C$. Then $(fg) = D^+ + Q_5 - 4 \cdot \infty$. It follows that $fg \in L(4 \cdot \infty) - L(3 \cdot \infty)$. Thus (fg) = (Y + b'X + c'), i.e. $Y + b'X + c' \in I_D$, for $b', c' \in K$. Therefore, we proved that if D is not a normal divisor, there is a function $f \in I_D$ of the form X + a or Y + bX + c for $a, b, c \in K$.

Conversely, if n = 3 and there is a function $f = X + a \in I_D$ for $a \in K$. Then we have $(f)^+ = D^+$, since $(f)^+ \ge D^+$ with $\deg(f)^+ = \deg D^+$. It implies that (f) = D, and $D \sim 0$. Thus D is not a normal divisor. If n = 3 and there is a function $f = Y + bX + c \in I_D$ for $b, c \in K$, then $(f) = D^+ + P - 4 \cdot \infty$ for $P = (x, y) \in C$. It follows that $D - (f) + (X - x) = P_2 + P_3 - 2 \cdot \infty$ for $P_2, P_3 \in C$ such that $(X - x) = P + P_2 + P_3 - 3 \cdot \infty$. It implies that $D \sim P_1 + P_2 - 2 \cdot \infty$. Thus D is not a normal divisor. \Box

3.2 A Groebner basis for a normal ideal

In this subsection, we give a condition of an ideal of K[X, Y] to be a normal ideal of C, and a condition of a polynomial subset of K[X, Y] to be a reduced Groebner basis for a normal ideal of C. Furthermore, we give an expression of the reduced Groebner basis for a normal divisor $D = \sum P_i - n \cdot \infty \in \text{Div}_K^0(C)$.

The following lemma, which is followed from Proposition 3.2, states a condition of a polynomial ideal to be a normal ideal of C, i.e. $\varphi^{-1}(L(\infty \cdot \infty - D^+))$ for a normal divisor $D \in \text{Div}_K^0(C)$.

Lemma 3.3 Let $I \neq \{0\}$ be an ideal in K[X, Y] and let G be the reduced Groebner basis for I. Then I is a normal ideal of C if and only if G satisfies the following two conditions: (a) The remainder \overline{F}^G of F(X,Y) on division by G is 0;

(b) Either $0 \le \delta(G) \le 2$, or $\delta(G) = 3$ and $LM(G) = \{X^2, XY, Y^2\}$.

It follows that a polynomial subset $G \neq \{0\}$ of K[X, Y] is the reduced Groebner basis for a normal ideal of C if and only if G is the reduced Groebner basis satisfying the conditions (a), (b) of Lemma 3.3. Thus we have:

Proposition 3.4 Let $G \neq \{0\}$ be a polynomial subset of K[X, Y]. Let a_i, b_i, c_i be elements of K. Then G is a reduced Groebner basis for a normal ideal of C if and only if G is one of the following:

(a) $G = \{1\}$; (b) $G = \{g_1(X, Y) = X + c_1, g_2(X, Y) = Y + c_2\}$ and satisfies $F(-c_1, -c_2) = 0$; (c) $G = \{g_1(X, Y) = X + c_1, g_2(X, Y) = Y^2 + a_2Y + c_2\}$ and satisfies $g_2(X, Y) \mid F(-c_1, Y)$; (d) $G = \{g_1(X, Y) = Y + b_1X + c_1, g_2(X, Y) = X^2 + b_2X + c_2\}$ and satisfies $g_2(X, Y) \mid F(X, -b_1X - c_1)$; (e) $G = \{g_1(X, Y), g_2(X, Y), g_3(X, Y)\}$ for

$g_1(X,Y)$	=	X^2	$+a_1Y+b_1X+c_1,$
$g_2(X,Y)$	=	XY	$+a_2Y + b_2X + c_2,$
$g_3(X,Y)$	=	Y^2	$+a_3Y+b_3X+c_3,$

satisfying

$$c_1 = -a_2^2 + a_2b_1 - a_1b_2 + a_1a_3,$$

$$c_2 = a_2b_2 - a_1b_3,$$

$$c_3 = -a_2b_3 - b_2^2 + a_3b_2 + b_1b_3,$$

and

$$\begin{array}{ll} a_{1} \neq 0 & \Rightarrow & g_{2}(X, f(X)) \mid F(X, f(X)), \\ b_{3} \neq 0 & \Rightarrow & g_{2}(g(Y), Y) \mid F(g(Y), Y), \\ a_{1} = b_{3} = 0 & \Rightarrow & g_{1}(X, Y) \mid F(X, -b_{2}), \ g_{3}(X, Y) \mid F(-a_{2}, Y), \end{array}$$

where $f(X) = -a_1^{-1}(X^2 + b_1X + c_1)$ and $g(Y) = -b_3^{-1}(Y^2 + a_3Y + c_3)$.

Proof. Let \overline{F}^G denote the remainder of F(X,Y) on division by G. Then it is enough to find a reduced Groebner basis G such that \overline{F}^G is equal to 0, and LM(G) is $\{1\}, \{X,Y\}, \{X,Y^2\}, \{Y,X^2\}$, or $\{X^2,XY,Y^2\}$ by Lemma 3.3. We wish to find a condition that $\overline{F}^G = 0$ is satisfied by a reduced Groebner basis G with a set of leading monomials of the above form.

(a) If G is a reduced Groebner basis with $LM(G) = \{1\}$, then $G = \{1\}$.

(b) If G is a reduced Groebner basis with $LM(G) = \{X, Y\}$, then the elements of G are $g_1(X, Y) = X + c_1, g_2(X, Y) = Y + c_2$ for $c_1, c_2 \in K$. For the remainder $\overline{F}^G = r_0 \in K$, we can write

$$F(X,Y) = q_1(X,Y)g_1(X,Y) + q_2(X,Y)g_2(X,Y) + r_0,$$

with $q_1(X,Y), q_2(X,Y) \in K[X,Y]$. Thus $\overline{F}^G = 0$ if and only if $F(-c_1, -c_2) = 0$.

(c) If G is a reduced Groebner basis with $LM(G) = \{X, Y^2\}$, then the elements of G are $g_1(X, Y) = X + c_1, g_2(X, Y) = Y^2 + a_2Y + c_2$ for $a_2, c_1, c_2 \in K$. For the remainder $\overline{F}^G = r_1Y + r_0$, we can write

$$F(X,Y) = q_1(X,Y)g_1(X,Y) + q_2(X,Y)g_2(X,Y) + r_1Y + r_0$$

with $q_1(X, Y), q_2(X, Y) \in K[X, Y]$. Since

$$F(-c_1, Y) = q_2(-c_1, Y)g_2(-c_1, Y) + r_1Y + r_0,$$

the remainder of $F(-c_1, Y)$ on division by $g_2(-c_1, Y)$ is $r_1Y + r_0$. Thus $\overline{F}^G = 0$ if and only if $F(-c_1, Y)$ is divisible by $g_2(-c_1, Y) = g_2(X, Y)$.

(d) If G is a reduced Groebner basis with $LM(G) = \{Y, X^2\}$, then the elements of G are $g_1(X, Y) = Y + b_1X + c_1, g_2(X, Y) = X^2 + b_2X + c_2$ for $b_1, b_2, c_1, c_2 \in K$. For the remainder $\overline{F}^G = r_1X + r_0$, we can write

$$F(X,Y) = q_1(X,Y)g_1(X,Y) + q_2(X,Y)g_2(X,Y) + r_1X + r_0$$

with $q_1(X, Y), q_2(X, Y) \in K[X, Y]$. Since

$$F(X, -b_1X - c_1) = q_2(X, -b_1X - c_1)g_2(X, -b_1X - c_1) + r_1X + r_0$$

the remainder of $F(X, -b_1X - c_1)$ on division by $g_2(X, -b_1X - c_1)$ is $r_1X + r_0$. Thus $\overline{F}^G = 0$ if and only if $F(X, -b_1X - c_1)$ is divisible by $g_2(X, -b_1X - c_1) = g_2(X, Y)$.

(e) If G is a reduced Groebner basis with $LM(G) = \{X^2, XY, Y^2\}$, then G has the elements

$$g_1(X,Y) = X^2 + a_1Y + b_1X + c_1,$$

$$g_2(X,Y) = XY + a_2Y + b_2X + c_2,$$

$$g_3(X,Y) = Y^2 + a_3Y + b_3X + c_3,$$

with $a_i, b_i, c_i \in K$ for i = 1, 2, 3 satisfying that the remainder of S-polynomial

$$S(g_j(X,Y),g_k(X,Y)) = \operatorname{lcm}(\operatorname{LM}(g_j),\operatorname{LM}(g_k))\left(\frac{g_j(X,Y)}{\operatorname{LT}(g_j(X,Y))} - \frac{g_k(X,Y)}{\operatorname{LT}(g_k(X,Y))}\right),$$

on division by G is equal to 0 for all $1 \le j \ne k \le 3$, where $\operatorname{lcm}(\operatorname{LM}(g_j), \operatorname{LM}(g_k))$ denotes the least common multiple of $\operatorname{LM}(g_j(X, Y))$ and $\operatorname{LM}(g_k(X, Y))$. It follows that

$$c_{1} = -a_{2}^{2} + a_{2}b_{1} - a_{1}b_{2} + a_{1}a_{3},$$

$$c_{2} = a_{2}b_{2} - a_{1}b_{3},$$

$$c_{3} = -a_{2}b_{3} - b_{2}^{2} + a_{3}b_{2} + b_{1}b_{3}.$$
(2.1)

For the remainder $\overline{F}^G = r_2 Y + r_1 X + r_0$, we can write

$$F(X,Y) = q_1(X,Y)g_1(X,Y) + q_2(X,Y)g_2(X,Y) + q_3(X,Y)g_3(X,Y) + r_2Y + r_1X + r_0$$
(2.2)

with $q_1(X, Y), q_2(X, Y), q_3(X, Y) \in K[X, Y].$

If $a_1 \neq 0$, (2.2) can be written as

$$F(X,Y) = q'_1(X,Y)g_1(X,Y) + q'_2(X,Y)g_2(X,Y) + r_2Y + r_1X + r_0$$

for $q'_1(X,Y), q'_2(X,Y) \in K[X,Y]$, since $g_3(X,Y) = a_1^{-1}(Y+b_2)g_1(X,Y) - a_1^{-1}(X-a_2+b_1)g_2(X,Y)$. If we substitute $f(X) = -a_1^{-1}(X^2+b_1X+c_1)$ for Y, then

$$F(X, f(X)) = q'_2(X, f(X))g_2(X, f(X)) + r_2f(X) + r_1X + r_0.$$

It follows that the remainder of F(X, f(X)) on division by $g_2(X, f(X))$ is $r_2f(X) + r_1X + r_0$. Thus $\overline{F}^G = 0$ if and only if F(X, f(X)) is divisible by $g_2(X, f(X))$.

If $b_3 \neq 0$, (2.2) can be written as

$$F(X,Y) = q_2''(X,Y)g_2(X,Y) + q_3''(X,Y)g_3(X,Y) + r_2Y + r_1X + r_0$$

for $q_2''(X,Y), q_3''(X,Y) \in K[X,Y]$, since $g_1(X,Y) = -b_3^{-1}(Y-b_2+a_3)g_2(X,Y) + b_3^{-1}(X+a_2)g_3(X,Y)$. If we substitute $g(Y) = -b_3^{-1}(Y^2+a_3Y+c_3)$ for X, then

$$F(g(Y), Y) = q_2''(g(Y), Y)g_2(g(Y), Y) + r_2Y + r_1g(Y) + r_0.$$

It follows that the remainder of F(g(Y), Y) on division by $g_2(g(Y), Y)$ is $r_2Y + r_1g(Y) + r_0$. Thus $\overline{F}^G = 0$ if and only if F(g(Y), Y) is divisible by $g_2(g(Y), Y)$.

If $a_1 = b_3 = 0$, then

$$g_1(X,Y) = (X+a_2)(X-a_2+b_1),$$

$$g_2(X,Y) = (X+a_2)(Y+b_2),$$

$$g_3(X,Y) = (Y+b_2)(Y-b_2+a_3)$$

by (2.1). Applying them in (2.2), we have

$$F(-a_2, Y) = q_3(-a_2, Y)g_3(-a_2, Y) + r_2Y - a_2r_1 + r_0$$

and

$$F(X, -b_2) = q_1(X, -b_2)g_1(X, -b_2) + r_1X - b_2r_2 + r_0$$

Thus $\overline{F}^G = 0$ if and only if $g_3(X, Y) \mid F(-a_2, Y)$ and $g_1(X, Y) \mid F(X, -b_2)$.

The following is on the reduced Groebner basis for a given normal divisor.

Theorem 3.5 Let $D = \sum_{i=1}^{n} P_i - n \cdot \infty \in \text{Div}_K^0(C)$ be a normal divisor, where $P_i = (x_i, y_i) \in C$ for i = 1, ..., n. Let

$$l(X,Y) = \begin{cases} (x_2 - x_1)(Y - y_1) - (y_2 - y_1)(X - x_1) & \text{if } P_1 \neq P_2; \\ F_Y(x,y)(Y - y) + F_X(x,y)(X - x) & \text{if } P_1 = P_2 = (x,y), \end{cases}$$

where F_X (resp. F_Y) denotes the partial derivative of F(X,Y) with respect to X (resp. Y). Let I be the normal ideal $\varphi^{-1}(I_D)$ and let G be the reduced Groebner basis for I. Then G satisfies the following:

(a) If D = 0, then $G = \{1\}$; (b) If $D = P_1 - \infty$, then $G = \{X - x_1, Y - y_1\}$; (c) If $D = P_1 + P_2 - 2 \cdot \infty$, then (i) LM(l(X,Y)) = X: $G = \{l_m(X,Y), (Y - y_1)(Y - y_2)\}$; (ii) LM(l(X,Y)) = Y: $G = \{l_m(X,Y), (X - x_1)(X - x_2)\}$, where $l_m(X,Y) = LC(l(X,Y))^{-1}l(X,Y)$. (d) If $D = P_1 + P_2 + P_3 - 3 \cdot \infty$, then $G = \{g_1(X,Y), g_2(X,Y), g_3(X,Y)\}$ with

$$g_1(X,Y) = (X - x_1)(X - x_2) + k_1 l(X,Y),$$

$$g_2(X,Y) = (X - x_1)(Y - y_2) + k_2 l(X,Y),$$

$$g_3(X,Y) = (Y - y_1)(Y - y_2) + k_3 l(X,Y),$$

for

(i) if $\sharp\{P_1, P_2, P_3\} = 2$ or 3, then we can assume that $P_3 \neq P_1, P_2$ and we have

$$k_1 = -l(x_3, y_3)^{-1}(x_3 - x_1)(x_3 - x_2),$$

$$k_2 = -l(x_3, y_3)^{-1}(x_3 - x_1)(y_3 - y_2),$$

$$k_3 = -l(x_3, y_3)^{-1}(y_3 - y_1)(y_3 - y_2);$$

(ii) if $\sharp\{P_1, P_2, P_3\} = 1$, then

$$k_1 = (S_0^2 T_2 + 3y T_1^2 - S_0 S_1 T_1)^{-1} S_0^2,$$

$$k_2 = -(S_0^2 T_2 + 3y T_1^2 - S_0 S_1 T_1)^{-1} S_0 T_1,$$

$$k_3 = (S_0^2 T_2 + 3y T_1^2 - S_0 S_1 T_1)^{-1} T_1^2,$$

for

$$S_0 = 3y^2 + s_2x^2 + s_1x + s_0,$$

$$S_1 = 2s_2x + s_1,$$

$$T_1 = 2s_2xy + s_1y + 4x^3 + 3t_3x^2 + 2t_2x + t_1,$$

$$T_2 = s_2y + 6x^2 + 3t_3x + t_2,$$

where $\sharp\{P_1, P_2, P_3\}$ denotes the number of elements in $\{P_1, P_2, P_3\}$.

Proof. For the reduced Groebner basis G for I, we have $\delta(G) = \delta(I) = n$. (a) If D = 0, then $\delta(G) = 0$. It follows that $\text{LM}(G) = \{1\}$. Thus $G = \{1\}$. (b) If $D = P_1 - \infty$, then $\delta(G) = 1$. Thus $\text{LM}(G) = \{X, Y\}$ and

$$G = \{g_1(X, Y) = X + c_1, g_2(X, Y) = Y + c_2\}$$

for $c_1, c_2 \in K$. Since $(g_1)^+, (g_2)^+ \ge P_1$, we have $c_1 = -x_1, c_2 = -y_1$.

(c) If $D = P_1 + P_2 - 2 \cdot \infty$, then $\delta(G) = 2$. Thus $LM(G) = \{X, Y^2\}$ or $\{Y, X^2\}$. For the linear polynomial l(X, Y), we have $l(X, Y) \in I$ and $(X - x_1)(X - x_2), (Y - y_1)(Y - y_2) \in I$. The reduced Groebner basis G are obtained from a Groebner basis $\{l(X, Y), (X - x_1)(X - x_2), (Y - y_1)(Y - y_2)\}$ for I.

(d) If $P_1 + P_2 + P_3 - 3 \cdot \infty$, then $\delta(G) = 3$. Thus the elements of G are

$$g_1(X,Y) = X^2 + a_1Y + b_1X + c_1,$$

$$g_2(X,Y) = XY + a_2Y + b_2X + c_2,$$

$$g_3(X,Y) = Y^2 + a_3Y + b_3X + c_3$$

for $a_i, b_i, c_i \in K$ (i = 1, 2, 3) by Proposition 3.4. For the linear polynomial l(X, Y), every polynomial of the form aY + bX + c in $\varphi^{-1}(L(\infty \cdot \infty - (P_1 + P_2)))$ is kl(X, Y) for $k \in K$.

(i) Since $(g_1)^+ \ge P_1 + P_2$, we have $g_1(X, Y) - (X - x_1)(X - x_2) \in \varphi^{-1}(L(\infty \cdot \infty - (P_1 + P_2)))$ with a leading monomial $\le Y$. It follows that $g_1(X, Y) = (X - x_1)(X - x_2) + k_1 l(X, Y)$ for $k_1 \in K$. Further, $g_1(x_3, y_3) = 0$. Since D is a normal divisor, $l(x_3, y_3) \neq 0$ by Proposition 3.2. Thus $k_1 = -l(x_3, y_3)^{-1}(x_3 - x_1)(x_3 - x_2)$. Further, $g_2(X, Y)$ and $g_3(X, Y)$ are obtained from $(X - x_1)(Y - y_2), (Y - y_1)(Y - y_2) \in \varphi^{-1}(L(\infty \cdot \infty - (P_1 + P_2)))$.

(ii) Since $P_1 = P_2$, we have $l(X, Y) = F_Y(x, y)(Y - y) + F_X(x, y)(X - x)$.

If $F_Y(x,y) = S_0 = 0$, then $(l)^+ = (X-x)^+ \ge 2P$. It follows that $g_1(X,Y) = (X-x)^2$ and $g_2(X,Y) = (X-x)(Y-y)$. For a polynomial $(Y-y)^3 - F(X,Y) \in I$, the remainder $r(X,Y) = 3y(Y-y)^2 + X - x$ on division by $\{g_1(X,Y), g_2(X,Y)\}$ is also in I. Since D is a normal divisor, we have $y \ne 0$ by Proposition 3.2. Thus $LM(r(X,Y)) = Y^2$. It follows that $g_3(X,Y) = (Y-y)^2 + (3y)^{-1}(X-x)$.

If $F_Y(x,y) = S_0 \neq 0$, then $(l)^+ \geq 2P$ with $\operatorname{LM}(l(X,Y)) = Y$. It follows that $l(X,Y)(X-x), l(X,Y)(Y-y) \in I$ with the leading monomials XY and Y^2 . For a polynomial $F(X,Y) - F_Y(x,y)^{-1}l(X,Y)(Y-y)Y \in I$, the remainder $r(X,Y) = S_0^{-2}(S_0^2T_2 + 3yT_1^2 - S_0S_1T_1)(X-x)^2 + l(X,Y)$ on division by $\{l(X,Y)(X-x), l(X,Y)(Y-y)\}$ is also in I. Since D is a normal divisor, we have $S_0^2T_2 + 3yT_1^2 - S_0S_1T_1 \neq 0$ by Proposition 3.2. Thus $\operatorname{LM}(r(X,Y)) = X^2$. It implies that $g_1(X,Y) = (X-x)^2 + (S_0^2T_2 + 3yT_1^2 - S_0S_1T_1)^{-1}S_0^2l(X,Y)$. Further, $g_2(X,Y)$ and $g_3(X,Y)$ are obtained from a Groebner basis $\{g_1(X,Y), l(X,Y)(X-x), l(X,Y)(Y-y)\}$.

3.3 Inverse of a normal divisor

In this subsection, we give the inverse of normal divisors of C. Let $D = E - n \cdot \infty \in$ $\operatorname{Div}_{K}^{0}(C)$ be a divisor with $E = D^{+}$ and let G be the reduced Groebner basis for $\varphi^{-1}(I_{D})$. Let $D' = E' - n' \cdot \infty$ be the normal divisor such that $D' \sim -D$ and let G' be the reduced Groebner basis for $\varphi^{-1}(I_{D'})$. Then $D' = -D + (g_1)$ for the element $g_1(X, Y)$ with the smallest leading monomial but Y^3 in G, where (g_1) denotes the divisor $(\varphi(g_1(X, Y)))$. Since $E' = (g_1)^+ - E, \varphi^{-1}(I_{D'})$ is

$$\{h(X,Y) \mid h(X,Y)g_i(X,Y) \in \langle g_1(X,Y), F(X,Y) \rangle \text{ for all } g_i(X,Y) \in G\}$$

In particular, if D is a normal divisor, then $n' = \deg(g_1)^+ - n$ and $g_1(X, Y)$ is also the element with the smallest leading monomial in G'.

For example, let $D = E - 3 \cdot \infty$ be a normal divisor with

$$G = \{g_1(X, Y), g_2(X, Y), g_3(X, Y)\}\$$

such that $LM(g_1(X,Y)) = X^2$. Then $D' = -D + (g_1)$ and $\deg E' = 3$. Thus

$$G' = \{h_1(X, Y) = g_1(X, Y), h_2(X, Y), h_3(X, Y)\}$$

with $h_2(X, Y) = XY + A_2Y + B_2X + C_2$, $h_3(X, Y) = Y^2 + A_3Y + B_3X + C_3$ for $A_i, B_i, C_i \in K$ (i = 2, 3) such that $h_j(X, Y)g_k(X, Y) \in \langle g_1(X, Y), F(X, Y) \rangle$ for all j, k = 2, 3.

For a normal divisor D, we have the following on a normal divisor D' such that $D' \sim -D$:

Theorem 3.6 Let $D \in \text{Div}_{K}^{0}(C)$ be a normal divisor, and let G be the reduced Groebner basis for the normal ideal $\varphi^{-1}(I_{D})$. Let D' be the normal divisor such that $D' \sim -D$. Then the reduced Groebner basis G' for the normal ideal $\varphi^{-1}(I_{D'})$ is as follows: (a) If $G = \{1\}$, then $G' = \{1\}$; (b) If $G = \{g_{1}(X,Y) = X + c_{1}, g_{2}(X,Y) = Y + c_{2}\}$, then $G' = \{h_{1}(X,Y) = X + c_{1}, h_{2}(X,Y) = Y^{2} - c_{2}Y + c_{2}^{2} + s_{2}c_{1}^{2} - s_{1}c_{1} + s_{0}\}$; (c) If $G = \{g_{1}(X,Y) = X + c_{1}, g_{2}(X,Y) = Y^{2} + a_{2}Y + c_{2}\}$, then $G' = \{h_{1}(X,Y) = X + c_{1}, h_{2}(X,Y) = Y - a_{2}\}$; (d) If $G = \{g_{1}(X,Y) = Y + b_{1}X + c_{1}, g_{2}(X,Y) = X^{2} + b_{2}X + c_{2}\}$, then $G' = \{h_{1}(X,Y), h_{2}(X,Y)\}$ for

$$\begin{aligned} h_1(X,Y) &= Y + b_1 X + c_1, \\ h_2(X,Y) &= X^2 + (-b_1^3 - b_2 + t_3 - b_1 s_2) X \\ &+ b_1^3 b_2 + b_2^2 - 3b_1^2 c_1 - c_2 + t_2 - b_2 t_3 - b_1 s_1 + b_1 b_2 s_2 - c_1 s_2; \end{aligned}$$

(e) If $G = \{g_1(X, Y), g_2(X, Y), g_3(X, Y)\}$ for

$$g_1(X,Y) = X^2 + a_1Y + b_1X + c_1,$$

$$g_2(X,Y) = XY + a_2Y + b_2X + c_2,$$

$$g_3(X,Y) = Y^2 + a_3Y + b_3X + c_3,$$

3.4 Addition of normal divisors

In this subsection, we consider the addition of normal divisors in C. Let $D_1 = E_1 - n_1 \cdot \infty$ and $D_2 = E_2 - n_2 \cdot \infty$ be normal divisors of C with $E_1 = D_1^+$ and $E_2 = D_2^+$. Let $D' = E' - n' \cdot \infty$ be a normal divisor such that $D' \sim -(D_1 + D_2)$ and $D = E - n \cdot \infty$ be a normal divisor such that $D \sim D_1 + D_2$. In this subsection, we use the following notation:

$$I'$$
: a normal ideal $\varphi^{-1}(L(\infty \cdot \infty - E')),$

- I: a normal ideal $\varphi^{-1}(L(\infty \cdot \infty E)),$
- G_1 : a reduced Groebner basis for $\varphi^{-1}(L(\infty \cdot \infty E_1))$,
- G_2 : a reduced Groebner basis for $\varphi^{-1}(L(\infty \cdot \infty E_2))$,
- G_g : a set $\{f_i(X,Y)g_j(X,Y), F(X,Y) \mid f_i(X,Y) \in G_1, g_j(X,Y) \in G_2\},\$
- G: a reduced Groebner basis for I,
- H: a reduced Groebner basis for $\varphi^{-1}(L(\infty \cdot \infty (E_1 + E_2))))$,
- $h_1(X,Y)$: a polynomial with the smallest leading monomial in H,
- $v_1(X,Y)$: a monic polynomial with the smallest leading monomial in I',

f: a function $\varphi(f(X, Y))$ for a polynomial f(X, Y).

The final purpose of this subsection is to find G for the given G_1 and G_2 .

Since G_g generates $\varphi^{-1}(L(\infty \cdot \infty - (E_1 + E_2)))$, H is obtained by the algorithm due to Buchberger for computing a Groebner basis using S-polynomials. H satisfies that $\Delta(H) \subset \Delta(G_g)$ with $\delta(H) = n_1 + n_2$. Since $h_1 \in L(m \cdot \infty - (D_1 + D_2))$ with the smallest integer m such that $l(m \cdot \infty - (D_1 + D_2)) = 1$, we have $n_1 + n_2 \leq \deg(h_1)^+ = n_1 + n_2 + m \leq n_1 + n_2 + 3$. For the polynomial $h_1(X, Y)$, we have $D' = -(D_1 + D_2) + (h_1)$ and

$$I' = \{v(X,Y) \mid v(X,Y)h_i(X,Y) \in \langle h_1(X,Y), F(X,Y) \rangle \text{ for all } h_i(X,Y) \in H\}.$$

If LM(H) is obtained, $LM(v_1(X, Y))$ is determined by $n' = \deg(h_1)^+ - (n_1 + n_2)$ and $LM(v_1(X, Y)h_i(X, Y)) \in LM(\langle h_1(X, Y), F(X, Y) \rangle)$ for all $h_i(X, Y) \in H$. Further, LM(G)is determined with $LM(v_1(X, Y))$ and n' by Theorem 3.6. Thus, LM(G) is determined by LM(H) when G_1 and G_2 are given. As a result, we have the following on the relation between LM(H) and LM(G) for the given G_1 and G_2 :

no.	$LM(G_1)$	$LM(G_2)$	LM(H)	$\mathrm{LM}(G)$
Ι	$\{X,Y\}$	$\{X,Y\}$	(i) $\{X, Y^2\}$	$\{X, Y^2\}$
			(ii) $\{Y, X^2\}$	$\{Y, X^2\}$
II	$\{X,Y\}$	$\{X, Y^2\}$	(i) $\{X, Y^3\}$	{1}
			(ii) $\{X^2, XY, Y^2\}$	$\{X^2, XY, Y^2\}$
III	$\{X,Y\}$	$\{Y, X^2\}$	(i) $\{Y, X^3\}$	$\{X, Y^2\}$
			(ii) $\{X^2, XY, Y^2\}$	$\{X^2, XY, Y^2\}$
IV	$\{X,Y\}$	$\{X^2, XY, Y^2\}$	(i) $\{X^2, XY, Y^3\}$	$\{X,Y\}$
			(ii) $\{X^2, Y^2\}$	$\{Y, X^2\}$
			(iii) $\{XY, Y^2, X^3\}$	$\{X^2, XY, Y^2\}$
V	$\{X, Y^2\}$	$\{X, Y^2\}$	(i) $\{X^2, XY, Y^3\}$	$\{X,Y\}$
			(ii) $\{X^2, Y^2\}$	$\{Y, X^2\}$
VI	$\{X, Y^2\}$	$\{Y, X^2\}$	(i) $\{X^2, XY, Y^3\}$	$\{X,Y\}$
			(ii) $\{XY, Y^2, X^3\}$	$\{X^2, XY, Y^2\}$
VII	$\{Y, X^2\}$	$\{Y, X^2\}$	(i) $\{Y, X^4\}$	{1}
			(ii) $\{X^2, Y^2\}$	$\{Y, X^2\}$
			(iii) $\{XY, Y^2, X^3\}$	$\{X^2, XY, Y^2\}$
VIII	$\{X, Y^2\}$	$\{X^2, XY, Y^2\}$	(i) $\{X^2, XY^2, Y^3\}$	$\{X, Y^2\}$
			(ii) $\{XY, X^3, Y^3\}$	$\{Y, X^2\}$
			(iii) $\{Y^2, X^3, X^2Y\}$	$\{X^2, XY, Y^2\}$
IX	$\{Y, X^2\}$	$\{X^2, XY, Y^2\}$	(i) $\{X^2, XY^2, Y^3\}$	$\{X, Y^2\}$
			(ii) $\{XY, Y^2, X^4\}$	$\{X,Y\}$
			(iii) $\{XY, X^3, Y^3\}$	$\{Y, X^2\}$
			(iv) $\{Y^2, X^3, X^2Y\}$	$\{X^2, XY, Y^2\}$
Х	$\{X^2, XY, Y^2\}$	$\{X^2, XY, Y^2\}$	(i) $\{X^2, Y^3\}$	{1}
			(ii) $\{XY, X^4, Y^3\}$	$\{X, Y^2\}$
			(iii) $\{Y^2, X^3\}$	$\{X,Y\}$
			(iv) $\{Y^2, X^2Y, X^4\}$	$\{Y, X^2\}$
			(v) $\{X^3, X^2Y, XY^2, Y^3\}$	$\{X^2, XY, Y^2\}$

Since $v_1(X, Y)h_i(X, Y) \in \langle h_1(X, Y), F(X, Y) \rangle$, we can write

$$v_1(X,Y)h_i(X,Y) = q_{1,i}(X,Y)h_1(X,Y) + q_{2,i}(X,Y)F(X,Y)$$

with $q_{1,i}(X,Y), q_{2,i}(X,Y) \in K[X,Y]$. It follows that $(v_1) + (h_i) = (q_{1,i}) + (h_1)$. Thus $(q_{1,i})^+ = (v_1)^+ + (h_i)^+ - (h_1)^+$. Since $(h_i)^+ \ge E_1 + E_2$, we have $q_{1,i} \in L(\infty \cdot \infty - E)$. Thus $q_{1,i}(X,Y) \in I$. Conversely, if $f(X,Y) \in I$, then $(f)^+ \ge E$. For $H = (f_1)^+ \ge E$.

 ${h_1(X,Y),\ldots,h_t(X,Y)},$ it follows that

$$(f)^+ \geq E_1 + E_2 - (h_1)^+ + (v_1)^+$$

= min{ $(q_{1,i})^+ \mid i = 1, \cdots, t$ }.

It implies that the function $\varphi(f(X,Y)) \in \langle q_{1,1}, \cdots, q_{1,t} \rangle$. Thus

$$f(X,Y) \in \langle q_{1,1}(X,Y), \cdots, q_{1,t}(X,Y), F(X,Y) \rangle.$$

As a result,

$$I = \langle q_{1,1}(X,Y), \cdots, q_{1,t}(X,Y), F(X,Y) \rangle.$$

References

- L. M. Adleman, J. DeMarrais, and M. D. Huang, A subexponential Algorithm for Discrete Logarithms over the Rational Subgroup of the Jacobians of Large Genus Hyperelliptic Curves over Finite Fields, Algorithmic Number Theory, Lect. Notes Comp. Sci., 877, Springer-Verlag, pp. 28–40.
- [2] S. Arita, Algorithms for computation in Jacobian group of C_{ab} curve and their application to discrete-log-based public key cryptosystems, The mathematics of public key cryptography, Fields Institute A. Odlyzko et al (eds.), 1999.
- [3] D. G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comp., 48(177), pp. 95–101 (1987).
- [4] D. Cox, J. Little, D. O'shea, *Ideals, Varieties, and Algorithms*, Springer-Verlag, Berlin, 1997.
- [5] W. Fulton, Algebraic Curves, Benjamin, New York, 1969.
- [6] S. D. Galbraith, S. M. Paulus, and N. P. Smart, Arithmetic on Superelliptic Curves, Math. Comp. vol. 71, no. 237, pp. 393–405, 2000.
- [7] V. D. Goppa, *Geometry and Codes*, Kluwer Academic Publishers, 1988.
- [8] R. Matsumoto, The Cab curve a generalization of the Weierstrass form to arbitrary plane curves, http://www.rmatsumoto.org/cab/html.
- [9] S. Miura, Algebraic geometric codes on certain plane curves, Trans. IEICE J75-A (1992), no. 11, pp. 1735–1745 (Japanese).
- [10] S. Miura, Linear codes on affine algebraic curves, Trans. IEICE J81-A (1998), no. 10, pp. 1398–1421, (Japanese).

- [11] R. Pellikaan, On the existence of order functions, J. Statistical Planning and Inference, no. 94, pp. 287–301, 2001.
- [12] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag.