Computing in the Jacobian of a C_{34} curve

Soondug Kim, Yasuo Morita [∗]

1 Introduction

In recent years, certain algebraic curves, for example elliptic curves and hyperelliptic curves, are drawing attention in applications to cryptography. To use algebraic curves in cryptography, we require a fast algorithm on addition in the Jacobian. In elliptic curve cryptosystems, a point of the Jacobian can be uniquely represented by a point of the curve. In hyperelliptic curve cryptosystems, a point of the Jacobian can be uniquely represented by Mumford's form, and the known algorithms on computing in the Jacobian use Mumford's form. S. Miura found a family of algebraic curves named C_{ab} curves, which include elliptic curves and hyperelliptic curves, and S. Arita provided an algorithm on addition in the Jacobian of a C_{ab} curve.

Algebraic curves of large genus suffer efficient attacks such as function sieves and their variants. The genus of a C_{34} curve is 3, and it is the smallest genus of a non-elliptic, non-hyperelliptic C_{ab} curve. For this reason, we study C_{34} curves. Especially, we study the addition in the Jacobian of a C_{34} curve.

In this paper, for a C_{34} curve defined over a perfect field, we give a unique representation on the points of the Jacobian by normal divisors. Further, we express a normal divisor by the reduced Groebner basis with respect to the C_{ab} order for the corresponding ideal of $K[X, Y]$. Such an ideal is called a normal ideal. We give a condition of a polynomial subset to be a reduced Groebner basis for a normal ideal, and we give an explicit expression of the reduced Groebner basis for a given normal ideal. We give the reduced Groebner basis for the normal ideal corresponding to the normal divisor which is linearly equivalent to $-D$ for a given normal divisor D. Finally, we study the sum of normal divisors.

Throughout this paper, K denotes a perfect field and \overline{K} denotes the algebraic closure of K.

[∗]Yasuo Morita: Mathematical Institute, Tohoku University

2 Preliminaries

In this section, we review the Jacobian of an algebraic curve and C_{ab} curves.

2.1 Jacobian of an algebraic curve

Let C be a plane curve defined over K and let $K(C)$ denote the function field of C. Then the divisor group $Div(C)$ of C is defined to be the free abelian group generated by the points of C. Thus a divisor $D \in Div(C)$ is a formal sum $D = \sum_{P \in C} n_P P$ with $n_P \in \mathbb{Z}$ and $n_P = 0$ for all but a finite number of $P \in C$. The degree of a divisor $D = \sum_{P \in C} n_P P$ is defined by deg $D = \sum_{P \in C} n_P$. The divisors of degree 0 form a subgroup $Div^0(C) = \{D \in Div(C) \mid \deg D = 0\}$ of $Div(C)$. Let the Galois group $G_{\overline{K}/K}$ act on $Div(C)$ as $D^{\sigma} = \sum_{P \in C} n_P P^{\sigma}$. Then D is defined over K if and only if $D^{\sigma} = D$ for all $\sigma \in G_{\overline{K}/K}$. We denote by $Div_K(C)$ the group of divisors defined over K and put $Div_K^0(C) = Div^0(C) \cap Div_K(C)$. A divisor $D \in Div(C)$ is principal if it has the form $D = (f) = \sum_{P \in C} \text{ord}_P(f)P$ for some $f \in \overline{K}(C)^*$, where $\text{ord}_P(f)$ denotes the order of f at P. The set of principal divisors of C forms a subgroup of $Div^0(C)$. Two divisors D_1 and D_2 are linearly equivalent if $D_1 - D_2$ is principal, and it is denoted as $D_1 \sim D_2$. The Jacobian group of C, denoted $J(C)$, is the quotient group of $Div^0(C)$ by the subgroup of principal divisors. The invariant subgroup $J_K(C)$ of $J(C)$ under the action of $G_{\overline{K}/K}$ is called the Jacobian group of C defined over K .

A divisor $D = \sum_{P \in C} n_P P$ is said to be effective if each $n_P \ge 0$. We write $\sum_{P \in C} n_P P \ge$ $\sum_{P \in C} m_P P$ if $n_P \ge m_P$ holds for any P. For a divisor $D = \sum_{P \in C} n_P P$, $D^+ = \sum_{n_P > 0} n_P P$ and $D^{-} = \sum_{n_P < 0} (-n_P)P$ are the zero divisor and the pole divisor of D, respectively. For a divisor D defined over K , we set

$$
L(D) := \{ f \in K(C)^* \mid (f) \ge -D \} \cup \{ 0 \},
$$

and we denote the dimension $\dim_K L(D)$ by $l(D)$.

2.2 C_{ab} curves

In this subsection, we review the C_{ab} curves.

Definition 2.1 Let a and b be relatively prime positive integers. Then a C_{ab} curve defined over K is a nonsingular curve defined by $F(X, Y) = 0$, where $F(X, Y)$ has the form

$$
F(X,Y) = \alpha_{0,a} Y^a + \alpha_{b,0} X^b + \sum_{ai+bj < ab} \alpha_{i,j} X^i Y^j \in K[X,Y]
$$

for nonzero $\alpha_{0,a}, \alpha_{b,0} \in K$.

Since $gcd(a, b) = 1$, we have $m, n \in \mathbb{Z}$ such that $am + bn = 1$. Then, multiplying $F(X,Y)$ by $\alpha_{0,a}^{(a-1)bn}\alpha_{b,0}^{-am}$ and replacing X and Y by $\alpha_{0,a}^{-(a-1)n}\alpha_{b,0}^{-n}X$ and $\alpha_{0,a}^{-(m+bn)}\alpha_{b,0}^mY$, respectively, we have a simplified equation $F_1(X, Y) = 0$, where

$$
F_1(X, Y) := Y^a + X^b + \sum_{ai + bj < ab} \beta_{i,j} X^i Y^j \in K[X, Y].
$$

Throughout this subsection, let C be a C_{ab} curve defined by $F(X, Y) = 0$ with a polynomial $F(X, Y) \in K[X, Y]$. Let $R_K(C)$ denote the coordinate ring of C. Then (a) C is an absolutely irreducible algebraic curve;

(b) There exists exactly one K-rational place ∞ at infinity, which implies that the degree of ∞ is 1. Furthermore, the pole divisors of X and Y are $a \cdot \infty$ and $b \cdot \infty$, respectively; (c) For $m \in \mathbb{Z}_{\geq 0}$, $\{X^iY^j \bmod F(X,Y) \mid 0 \leq i, 0 \leq j \leq a-1, ai+bj \leq m\}$ is a basis of a vector space $L(m \cdot \infty)$ over K.

For a fixed monomial order on $K[X, Y]$, the multidegree MD(f) of a polynomial $f =$ $\sum_{\alpha} a_{\alpha} X^{\alpha_1} Y^{\alpha_2}$ is $\max\{\alpha = (\alpha_1, \alpha_2) \in \mathbb{Z}_{\geq 0}^2 \mid a_{\alpha} \neq 0\}$, where the maximum is taken with respect to the monomial order. For a polynomial f, we let $LC(f)$, $LM(f)$ and $LT(f)$ denote the leading coefficient, the leading monomial and the leading term of f, respectively. For a nonempty subset G of $K[X, Y]$, we let $LT(G)$ and $LM(G)$ denote the set of leading terms and the set of leading monomials of elements of G, respectively.

Now, we recall the definition of Groebner bases.

Definition 2.2 Fix a monomial order. A finite subset $G = \{g_1, \ldots, g_t\}$ of an ideal I in $K[X, Y]$ is called a Groebner basis if $\langle \mathrm{LT}(g_1), \ldots, \mathrm{LT}(g_t) \rangle = \langle \mathrm{LT}(I) \rangle$. In particular, a Groebner basis satisfying

(i) $LC(g) = 1$ for all $g \in G$, (ii) For $g \in G$, any term of g is not in $\langle \mathrm{LT}(G - \{g\}) \rangle$ is called a reduced Groebner basis.

Fix a monomial order on $K[X, Y]$ and let $I \neq \{0\}$ be an ideal in $K[X, Y]$. Then I has a unique reduced Groebner basis. Furthermore, any Groebner basis for I generates I. On division by a Groebner basis G, the remainder is uniquely determined no matter how the elements of G are listed.

We introduce the monomial order named C_{ab} order, which is of great significance in C_{ab} curves.

Definition 2.3 (C_{ab} order) Let a and b be relatively prime positive integers with $a < b$. For $\alpha = (\alpha_1, \alpha_2), \beta = (\beta_1, \beta_2) \in \mathbb{Z}_{\geq 0}^2$, we write $\alpha > \beta$ if

$$
a\alpha_1 + b\alpha_2 > a\beta_1 + b\beta_2, \quad or \quad a\alpha_1 + b\alpha_2 = a\beta_1 + b\beta_2 \text{ and } \alpha_1 < \beta_1.
$$

It is easily known that this monomial order corresponds to pole degrees of functions in $R_K(C)$. We use only this monomial order in this paper.

We consider representations of $J_K(C)$. Let $g(C)$ denote the genus of C.

Definition 2.4 A divisor $D = E - n \cdot \infty \in Div_K^0(C)$ with an effective divisor E prime to ∞ and $0 \leq n \leq g(C)$ is called a semi-normal divisor. In particular, a semi-normal divisor $D = E - n \cdot \infty$ such that $n = \min\{n' \mid E' - n' \cdot \infty \sim D, E' \ge 0\}$ is called a normal divisor.

It is possible that a semi-normal divisor may be linearly equivalent to another seminormal divisor. But, every divisor $D \in Div_K^0(C)$ has a unique normal divisor D_n such that $D_n \sim D$. In fact, $D_n = D+(f)$ for a nonzero function $f \in L(D+m \cdot \infty)$ with the smallest integer m such that $l(D + m \cdot \infty) = 1$. In particular, for a divisor $D = D^+ - n \cdot \infty$ $Div_K^0(C)$, the normal divisor D' such that $D' \sim -D$ is $-D + (f)$ for a nonzero function $f \in L(-D + m \cdot \infty)$ with the smallest integer m such that $l(-D + m \cdot \infty) = 1$. It implies that $D' = -D + (f)$ for a nonzero function $f \in R_K(C)$ with the smallest pole degree such that $(f)^{+} \geq D^{+}$.

The Jacobian group $J_K(C)$ is isomorphic to the ideal class group $H(R_K(C))$ of $R_K(C)$ by the isomorphism

$$
\Phi : J_K(C) \longrightarrow H(R_K(C))
$$

$$
[E - \deg E \cdot \infty] \longrightarrow [L(\infty \cdot \infty - E)],
$$

where, for any class [D] in $J_K(C)$, we choose an effective divisor E which satisfies that $D \sim E - \deg E \cdot \infty$. For a divisor $D \in Div_K^0(C)$ with the pole points only at infinity, we denote by I_D the ideal $L(\infty \cdot \infty - D^+)$ of $R_K(C)$.

Next,we consider the homomorphism

$$
\varphi : K[X, Y] \longrightarrow R_K(C)
$$

$$
f(X, Y) \longmapsto f(X, Y) \bmod F(X, Y).
$$

It is well-known that every ideal I of $R_K(C)$ is one-to-one correspondent to an ideal $\varphi^{-1}(I)$ of $K[X, Y]$ containing ker $\varphi = \langle F(X, Y) \rangle$. For a normal divisor $D \in \text{Div}_K^0(C)$, we call the ideal $\varphi^{-1}(I_D)$ of $K[X, Y]$ a normal ideal of C.

For an ideal I of $K[X, Y]$, we define $\Delta(I)$ as $\{X^iY^j \in K[X, Y] \mid X^iY^j \notin LM(I)\}\$ and we let $\delta(I)$ denote the number of elements in $\Delta(I)$. For a subset $G = \{g_1, \ldots, g_m\}$ of $K[X, Y]$, we define $\Delta(G)$ as $\{X^iY^j \mid (i, j) \in \mathbb{Z}_{\geq 0}^2 - \bigcup_{i=1}^m (\text{MD}(g_i) + \mathbb{Z}_{\geq 0}^2)\}\)$ and we let $\delta(G)$ denote the number of elements in $\Delta(G)$. Then, for a subset $G = \{g_1, \ldots, g_t\}$ of an ideal I satisfying $\delta(I) < \infty$, G is a Groebner basis for I if and only if $\delta(I) = \delta(G)$.

Now, we quote the following, which plays an important role in this paper:

Proposition 2.5 For a divisor $D = E - n \cdot \infty \in Div_K^0(C)$ with an effective divisor E prime to ∞ , we have

 $\deg E = \delta(I)$,

where I is the ideal $\varphi^{-1}(I_D)$ of $K[X, Y]$.

3 C_{34} curves

In this section, we consider C_{34} curves. Throughout this section, let C be a C_{34} curve defined by

$$
F(X, Y) := Y^3 + \gamma_2(X)Y + \gamma_3(X) = 0
$$

with $\gamma_2(X) = s_2X^2 + s_1X + s_0$, $\gamma_3(X) = X^4 + t_3X^3 + t_2X^2 + t_1X + t_0 \in K[X]$. Then the genus of C is equal to 3.

3.1 Normal divisors

In this subsection, we give a condition for a semi-normal divisor to be a normal divisor of C. The pole divisors of X and Y in $R_K(C)$ are $3 \cdot \infty$ and $4 \cdot \infty$, respectively. It follows that:

Lemma 3.1 Let a, b, c be elements of K. Then the principal divisor $(X+a)$ can be written as $(X+a) = P_1+P_2+P_3-3 \infty$ with $P_1, P_2, P_3 \in C$, and the principal divisor $(Y+bX+c)$ can be written as $(Y + bX + c) = Q_1 + Q_2 + Q_3 + Q_4 - 4 \cdot \infty$ with $Q_1, Q_2, Q_3, Q_4 \in C$.

The following proposition gives a condition for a semi-normal divisor $D \in Div_K^0(C)$ to be a normal divisor.

Proposition 3.2 Let $D \in \text{Div}_K^0(C)$ be a semi-normal divisor and let $n = \text{deg } D^+$. Then D is a normal divisor if and only if either (i) $0 \leq n \leq 2$, or (ii) $n = 3$ and I_D contains no function of the form $X + a$ or $Y + bX + c$ for $a, b, c \in K$.

Proof. The semi-normal divisor D is a normal divisor if and only if D is not linearly equivalent to any semi-normal divisor with a pole degree which is smaller than n .

If $n = 0$, then $D = 0$ is a normal divisor.

If $n = 1$ and D is not a normal divisor, then $D \sim 0$. It follows that $D = (f)$ for some $f \in K(C)^*$. Then f is in $L(1 \cdot \infty) - L(0 \cdot \infty)$. But it is a contradition because $L(1 \cdot \infty) - L(0 \cdot \infty) = \emptyset.$

If $n = 2$ and D is not a normal divisor, then $D \sim 0$ or $D \sim P - \infty$ for a point $P \in C$. First, it is impossible that $D \sim 0$, since $L(2 \cdot \infty) - L(1 \cdot \infty) = \emptyset$. Second, suppose that

 $D \sim P - \infty$ for $P = (x, y) \in C$. Then $D - P + \infty = (f)$ for some $f \in K(C)^*$. Since $(f)+(X-x) = D^+ + P_2 + P_3 - 4 \cdot \infty$ for $P_2, P_3 \in C$ such that $(X-x) = P + P_2 + P_3 - 3 \cdot \infty$. It follows that the function $f \cdot (X-x) \in L(4 \cdot \infty) - L(3 \cdot \infty)$. This implies that $(f \cdot (X-x)) =$ $(Y + bX + c)$ for $b, c \in K$. Thus we have $Y + bX + c, X - x \in L(\infty \cdot \infty - (P_2 + P_3)).$ It is a contradiction because there is only one line through with P_1 and P_2 , which is the tangent line if $P_1 = P_2$.

If $n = 3$ and D is not a normal divisor, then $D \sim 0$, $D \sim P - \infty$, or $D \sim Q_1 + Q_2 - 2 \sim \infty$ for $P, Q_1, Q_2 \in C$. First, suppose that $D \sim 0$. Then $D = (f)$ for some $f \in K(C)^*$. It follows that $f \in L(3 \cdot \infty) - L(2 \cdot \infty)$. This implies that $(f) = (X + a)$, i.e. $X + a \in I_D$, for $a \in K$. Second, suppose that $D \sim P - \infty$. Then $D - P + \infty = (f)$ for some $f \in K(C)^*$. For $P = (x, y) \in C$, $(f) + (X - x) = D^+ + P_2 + P_3 - 5 \cdot \infty$ for $P_2, P_3 \in C$ such that $(X-x) = P + P_2 + P_3 - 3 \cdot \infty$. It follows that $f \cdot (X-x) \in L(5 \cdot \infty) - L(4 \cdot \infty) = \emptyset$, which is a contradiction. Last, suppose that $D \sim Q_1 + Q_2 - 2 \cdot \infty$. Then $D - Q_1 - Q_2 + 2 \cdot \infty = (f)$ for some $f \in K(C)^*$. Let g be the defining equation of the line through with Q_1 and Q_2 , which is the tangent line if $Q_1 = Q_2$. Then either $g = X + a$ for $a \in K$ or $g = Y + bX + c$ for $b, c \in K$. For $g = Y + bX + c$, we can write $(g) = Q_1 + Q_2 + Q_3 + Q_4 - 4 \cdot \infty$ for $Q_3, Q_4 \in C$. Then $(fg) = D^+ + Q_3 + Q_4 - 5 \cdot \infty$, which is a contradiction since $L(5 \cdot \infty) - L(4 \cdot \infty) = \emptyset$. Thus $g = X + a$. Let $(g) = Q_1 + Q_2 + Q_5 - 3 \cdot \infty$ for $Q_5 \in C$. Then $(fg) = D^+ + Q_5 - 4 \cdot \infty$. It follows that $fg \in L(4 \cdot \infty) - L(3 \cdot \infty)$. Thus $(fg) = (Y + b'X + c')$, i.e. $Y + b'X + c' \in I_D$, for $b', c' \in K$. Therefore, we proved that if D is not a normal divisor, there is a function $f \in I_D$ of the form $X + a$ or $Y + bX + c$ for $a, b, c \in K$.

Conversely, if $n = 3$ and there is a function $f = X + a \in I_D$ for $a \in K$. Then we have $(f)^+ = D^+$, since $(f)^+ \ge D^+$ with $\deg(f)^+ = \deg D^+$. It implies that $(f) = D$, and $D \sim 0$. Thus D is not a normal divisor. If $n = 3$ and there is a function $f =$ $Y + bX + c \in I_D$ for $b, c \in K$, then $(f) = D^+ + P - 4 \cdot \infty$ for $P = (x, y) \in C$. It follows that $D-(f)+(X-x) = P_2+P_3-2 \cdot \infty$ for $P_2, P_3 \in C$ such that $(X-x) = P_2+P_3-3 \cdot \infty$. It implies that $D \sim P_1 + P_2 - 2 \cdot \infty$. Thus D is not a normal divisor. $□$

3.2 A Groebner basis for a normal ideal

In this subsection, we give a condition of an ideal of $K[X, Y]$ to be a normal ideal of C, and a condition of a polynomial subset of $K[X, Y]$ to be a reduced Groebner basis for a normal ideal of C. Furthermore, we give an expression of the reduced Groebner basis for a normal divisor $D = \sum P_i - n \cdot \infty \in Div_K^0(C)$.

The following lemma, which is followed from Proposition 3.2, states a condition of a polynomial ideal to be a normal ideal of C, i.e. $\varphi^{-1}(L(\infty \cdot \infty - D^+))$ for a normal divisor $D \in \text{Div}_K^0(C).$

Lemma 3.3 Let $I \neq \{0\}$ be an ideal in $K[X, Y]$ and let G be the reduced Groebner basis for I. Then I is a normal ideal of C if and only if G satisfies the following two conditions: (a) The remainder \overline{F}^G of $F(X,Y)$ on division by G is 0;

(b) Either $0 \le \delta(G) \le 2$, or $\delta(G) = 3$ and $LM(G) = \{X^2, XY, Y^2\}.$

It follows that a polynomial subset $G \neq \{0\}$ of $K[X, Y]$ is the reduced Groebner basis for a normal ideal of C if and only if G is the reduced Groebner basis satisfying the conditions (a), (b) of Lemma 3.3. Thus we have:

Proposition 3.4 Let $G \neq \{0\}$ be a polynomial subset of $K[X, Y]$. Let a_i, b_i, c_i be elements of K. Then G is a reduced Groebner basis for a normal ideal of C if and only if G is one of the following:

(a) $G = \{1\};$ (b) $G = \{g_1(X, Y) = X + c_1, g_2(X, Y) = Y + c_2\}$ and satisfies $F(-c_1, -c_2) = 0$; (c) $G = \{g_1(X, Y) = X + c_1, g_2(X, Y) = Y^2 + a_2Y + c_2\}$ and satisfies $g_2(X, Y) | F(-c_1, Y);$ (d) $G = \{g_1(X, Y) = Y + b_1X + c_1, g_2(X, Y) = X^2 + b_2X + c_2\}$ and satisfies $g_2(X, Y) | F(X, -b_1X - c_1);$ (e) $G = \{g_1(X, Y), g_2(X, Y), g_3(X, Y)\}\$ for

satisfying

$$
c_1 = -a_2^2 + a_2b_1 - a_1b_2 + a_1a_3,
$$

\n
$$
c_2 = a_2b_2 - a_1b_3,
$$

\n
$$
c_3 = -a_2b_3 - b_2^2 + a_3b_2 + b_1b_3,
$$

and

$$
a_1 \neq 0 \Rightarrow g_2(X, f(X)) | F(X, f(X)),
$$

\n
$$
b_3 \neq 0 \Rightarrow g_2(g(Y), Y) | F(g(Y), Y),
$$

\n
$$
a_1 = b_3 = 0 \Rightarrow g_1(X, Y) | F(X, -b_2), g_3(X, Y) | F(-a_2, Y),
$$

where $f(X) = -a_1^{-1}(X^2 + b_1X + c_1)$ and $g(Y) = -b_3^{-1}(Y^2 + a_3Y + c_3)$.

Proof. Let \overline{F}^G denote the remainder of $F(X, Y)$ on division by G. Then it is enough to find a reduced Groebner basis G such that \overline{F}^G is equal to 0, and LM(G) is $\{1\}$, $\{X,Y\}$, $\{X, Y^2\}$, $\{Y, X^2\}$, or $\{X^2, XY, Y^2\}$ by Lemma 3.3. We wish to find a condition that $\overline{F}^G=0$ is satisfied by a reduced Groebner basis G with a set of leading monomials of the above form.

(a) If G is a reduced Groebner basis with $LM(G) = \{1\}$, then $G = \{1\}$.

(b) If G is a reduced Groebner basis with $LM(G) = \{X, Y\}$, then the elements of G are $g_1(X,Y) = X + c_1, g_2(X,Y) = Y + c_2$ for $c_1, c_2 \in K$. For the remainder $\overline{F}^G = r_0 \in K$, we can write

$$
F(X,Y) = q_1(X,Y)g_1(X,Y) + q_2(X,Y)g_2(X,Y) + r_0,
$$

with $q_1(X, Y), q_2(X, Y) \in K[X, Y]$. Thus $\overline{F}^G = 0$ if and only if $F(-c_1, -c_2) = 0$.

(c) If G is a reduced Groebner basis with $LM(G) = \{X, Y^2\}$, then the elements of G are $g_1(X,Y) = X + c_1, g_2(X,Y) = Y^2 + a_2Y + c_2$ for $a_2, c_1, c_2 \in K$. For the remainder $\overline{F}^G = r_1 Y + r_0$, we can write

$$
F(X,Y) = q_1(X,Y)g_1(X,Y) + q_2(X,Y)g_2(X,Y) + r_1Y + r_0
$$

with $q_1(X, Y), q_2(X, Y) \in K[X, Y]$. Since

$$
F(-c_1, Y) = q_2(-c_1, Y)g_2(-c_1, Y) + r_1Y + r_0,
$$

the remainder of $F(-c_1, Y)$ on division by $g_2(-c_1, Y)$ is $r_1Y + r_0$. Thus $\overline{F}^G = 0$ if and only if $F(-c_1, Y)$ is divisible by $g_2(-c_1, Y) = g_2(X, Y)$.

(d) If G is a reduced Groebner basis with $LM(G) = \{Y, X^2\}$, then the elements of G are $g_1(X, Y) = Y + b_1X + c_1, g_2(X, Y) = X^2 + b_2X + c_2$ for $b_1, b_2, c_1, c_2 \in K$. For the remainder $\overline{F}^G = r_1 X + r_0$, we can write

$$
F(X,Y) = q_1(X,Y)g_1(X, Y) + q_2(X,Y)g_2(X,Y) + r_1X + r_0
$$

with $q_1(X, Y), q_2(X, Y) \in K[X, Y]$. Since

$$
F(X, -b_1X - c_1) = q_2(X, -b_1X - c_1)g_2(X, -b_1X - c_1) + r_1X + r_0,
$$

the remainder of $F(X, -b_1X - c_1)$ on division by $g_2(X, -b_1X - c_1)$ is $r_1X + r_0$. Thus $\overline{F}^G = 0$ if and only if $F(X, -b_1X - c_1)$ is divisible by $g_2(X, -b_1X - c_1) = g_2(X, Y)$.

(e) If G is a reduced Groebner basis with $LM(G) = \{X^2, XY, Y^2\}$, then G has the elements

$$
g_1(X,Y) = X^2 + a_1Y + b_1X + c_1,
$$

\n
$$
g_2(X,Y) = XY + a_2Y + b_2X + c_2,
$$

\n
$$
g_3(X,Y) = Y^2 + a_3Y + b_3X + c_3,
$$

with $a_i, b_i, c_i \in K$ for $i = 1, 2, 3$ satisfying that the remainder of S-polynomial

$$
S(g_j(X,Y), g_k(X,Y)) = \text{lcm}(\text{LM}(g_j), \text{LM}(g_k))\left(\frac{g_j(X,Y)}{\text{LT}(g_j(X,Y))} - \frac{g_k(X,Y)}{\text{LT}(g_k(X,Y))}\right),
$$

on division by G is equal to 0 for all $1 \leq j \neq k \leq 3$, where $lcm(LM(g_i), LM(g_k))$ denotes the least common multiple of $LM(g_i(X, Y))$ and $LM(g_k(X, Y))$. It follows that

$$
c_1 = -a_2^2 + a_2b_1 - a_1b_2 + a_1a_3,
$$

\n
$$
c_2 = a_2b_2 - a_1b_3,
$$

\n
$$
c_3 = -a_2b_3 - b_2^2 + a_3b_2 + b_1b_3.
$$
\n(2.1)

For the remainder $\overline{F}^G = r_2 Y + r_1 X + r_0$, we can write

$$
F(X,Y) = q_1(X,Y)g_1(X,Y) + q_2(X,Y)g_2(X,Y) + q_3(X,Y)g_3(X,Y) + r_2Y + r_1X + r_0
$$
\n(2.2)

with $q_1(X, Y), q_2(X, Y), q_3(X, Y) \in K[X, Y].$

If $a_1 \neq 0$, (2.2) can be written as

$$
F(X,Y) = q'_1(X,Y)g_1(X,Y) + q'_2(X,Y)g_2(X,Y) + r_2Y + r_1X + r_0
$$

for $q'_1(X,Y), q'_2(X,Y) \in K[X,Y]$, since $g_3(X,Y) = a_1^{-1}(Y + b_2)g_1(X,Y) - a_1^{-1}(X - a_2 +$ $b_1)g_2(X,Y)$. If we substitute $f(X) = -a_1^{-1}(X^2 + b_1X + c_1)$ for Y, then

$$
F(X, f(X)) = q'_2(X, f(X))g_2(X, f(X)) + r_2f(X) + r_1X + r_0.
$$

It follows that the remainder of $F(X, f(X))$ on division by $q_2(X, f(X))$ is $r_2f(X)+r_1X +$ r_0 . Thus $\overline{F}^G = 0$ if and only if $F(X, f(X))$ is divisible by $g_2(X, f(X))$.

If $b_3 \neq 0$, (2.2) can be written as

$$
F(X,Y) = q_2''(X,Y)g_2(X,Y) + q_3''(X,Y)g_3(X,Y) + r_2Y + r_1X + r_0
$$

for $q''_2(X,Y), q''_3(X,Y) \in K[X,Y]$, since $g_1(X,Y) = -b_3^{-1}(Y - b_2 + a_3)g_2(X,Y) + b_3^{-1}(X +$ $a_2)g_3(X,Y)$. If we substitute $g(Y) = -b_3^{-1}(Y^2 + a_3Y + c_3)$ for X, then

$$
F(g(Y), Y) = q_2''(g(Y), Y)g_2(g(Y), Y) + r_2Y + r_1g(Y) + r_0.
$$

It follows that the remainder of $F(g(Y), Y)$ on division by $g_2(g(Y), Y)$ is $r_2Y + r_1g(Y) + r_0$. Thus $\overline{F}^G = 0$ if and only if $F(g(Y), Y)$ is divisible by $g_2(g(Y), Y)$.

If $a_1 = b_3 = 0$, then

$$
g_1(X,Y) = (X + a_2)(X - a_2 + b_1),
$$

\n
$$
g_2(X,Y) = (X + a_2)(Y + b_2),
$$

\n
$$
g_3(X,Y) = (Y + b_2)(Y - b_2 + a_3)
$$

by (2.1) . Applying them in (2.2) , we have

$$
F(-a_2, Y) = q_3(-a_2, Y)g_3(-a_2, Y) + r_2Y - a_2r_1 + r_0
$$

and

$$
F(X, -b_2) = q_1(X, -b_2)g_1(X, -b_2) + r_1X - b_2r_2 + r_0.
$$

Thus $\overline{F}^G = 0$ if and only if $g_3(X, Y) | F(-a_2, Y)$ and $g_1(X, Y) | F(X, -b_2)$.

The following is on the reduced Groebner basis for a given normal divisor.

Theorem 3.5 Let $D = \sum_{i=1}^{n} P_i - n \cdot \infty \in Div_K^0(C)$ be a normal divisor, where $P_i =$ $(x_i, y_i) \in C$ for $i = 1, \ldots, n$. Let

$$
l(X,Y) = \begin{cases} (x_2 - x_1)(Y - y_1) - (y_2 - y_1)(X - x_1) & \text{if } P_1 \neq P_2; \\ F_Y(x,y)(Y - y) + F_X(x,y)(X - x) & \text{if } P_1 = P_2 = (x, y), \end{cases}
$$

where F_X (resp. F_Y) denotes the partial derivative of $F(X, Y)$ with respect to X (resp. Y). Let I be the normal ideal $\varphi^{-1}(I_D)$ and let G be the reduced Groebner basis for I. Then G satisfies the following:

(a) If $D = 0$, then $G = \{1\}$; (b) If $D = P_1 - \infty$, then $G = \{X - x_1, Y - y_1\}$; (c) If $D = P_1 + P_2 - 2 \cdot \infty$, then (i) $LM(l(X, Y)) = X: G = \{l_m(X, Y), (Y - y_1)(Y - y_2)\};$ (ii) $LM(l(X, Y)) = Y: G = \{l_m(X, Y), (X - x_1)(X - x_2)\},$ where $l_m(X, Y) = LC(l(X, Y))^{-1}l(X, Y)$. (d) If $D = P_1 + P_2 + P_3 - 3 \cdot \infty$, then $G = \{g_1(X, Y), g_2(X, Y), g_3(X, Y)\}\$ with

$$
g_1(X,Y) = (X - x_1)(X - x_2) + k_1 l(X,Y),
$$

\n
$$
g_2(X,Y) = (X - x_1)(Y - y_2) + k_2 l(X,Y),
$$

\n
$$
g_3(X,Y) = (Y - y_1)(Y - y_2) + k_3 l(X,Y),
$$

for

(i) if $\sharp \{P_1, P_2, P_3\} = 2$ or 3, then we can assume that $P_3 \neq P_1, P_2$ and we have

$$
k_1 = -l(x_3, y_3)^{-1}(x_3 - x_1)(x_3 - x_2),
$$

\n
$$
k_2 = -l(x_3, y_3)^{-1}(x_3 - x_1)(y_3 - y_2),
$$

\n
$$
k_3 = -l(x_3, y_3)^{-1}(y_3 - y_1)(y_3 - y_2);
$$

(ii) if $\sharp \{P_1, P_2, P_3\} = 1$, then

$$
k_1 = (S_0^2 T_2 + 3yT_1^2 - S_0 S_1 T_1)^{-1} S_0^2,
$$

\n
$$
k_2 = -(S_0^2 T_2 + 3yT_1^2 - S_0 S_1 T_1)^{-1} S_0 T_1,
$$

\n
$$
k_3 = (S_0^2 T_2 + 3yT_1^2 - S_0 S_1 T_1)^{-1} T_1^2,
$$

for

$$
S_0 = 3y^2 + s_2x^2 + s_1x + s_0,
$$

\n
$$
S_1 = 2s_2x + s_1,
$$

\n
$$
T_1 = 2s_2xy + s_1y + 4x^3 + 3t_3x^2 + 2t_2x + t_1,
$$

\n
$$
T_2 = s_2y + 6x^2 + 3t_3x + t_2,
$$

where $\sharp \{P_1, P_2, P_3\}$ denotes the number of elements in $\{P_1, P_2, P_3\}$.

Proof. For the reduced Groebner basis G for I, we have $\delta(G) = \delta(I) = n$. (a) If $D = 0$, then $\delta(G) = 0$. It follows that $LM(G) = \{1\}$. Thus $G = \{1\}$. (b) If $D = P_1 - \infty$, then $\delta(G) = 1$. Thus $LM(G) = \{X, Y\}$ and

$$
G = \{g_1(X, Y) = X + c_1, g_2(X, Y) = Y + c_2\}
$$

for $c_1, c_2 \in K$. Since $(g_1)^+, (g_2)^+ \ge P_1$, we have $c_1 = -x_1, c_2 = -y_1$.

(c) If $D = P_1 + P_2 - 2 \cdot \infty$, then $\delta(G) = 2$. Thus LM(G) = {X, Y²} or {Y, X²}. For the linear polynomial $l(X, Y)$, we have $l(X, Y) \in I$ and $(X - x_1)(X - x_2), (Y - y_1)(Y - y_2) \in I$. The reduced Groebner basis G are obtained from a Groebner basis $\{l(X, Y), (X - x_1)(X - x_2)\}$ $(x_2), (Y - y_1)(Y - y_2)$ for I.

(d) If $P_1 + P_2 + P_3 - 3 \cdot \infty$, then $\delta(G) = 3$. Thus the elements of G are

$$
g_1(X, Y) = X^2 + a_1Y + b_1X + c_1,
$$

\n
$$
g_2(X, Y) = XY + a_2Y + b_2X + c_2,
$$

\n
$$
g_3(X, Y) = Y^2 + a_3Y + b_3X + c_3
$$

for $a_i, b_i, c_i \in K$ $(i = 1, 2, 3)$ by Proposition 3.4. For the linear polynomial $l(X, Y)$, every polynomial of the form $aY + bX + c$ in $\varphi^{-1}(L(\infty \cdot \infty - (P_1 + P_2)))$ is $kl(X, Y)$ for $k \in K$.

(i) Since $(g_1)^+ \ge P_1 + P_2$, we have $g_1(X, Y) - (X - x_1)(X - x_2) \in \varphi^{-1}(L(\infty \cdot \infty (P_1 + P_2)$)) with a leading monomial $\leq Y$. It follows that $g_1(X, Y) = (X - x_1)(X - x_2) +$ $k_1l(X, Y)$ for $k_1 \in K$. Further, $g_1(x_3, y_3) = 0$. Since D is a normal divisor, $l(x_3, y_3) \neq 0$ by Proposition 3.2. Thus $k_1 = -l(x_3, y_3)^{-1}(x_3 - x_1)(x_3 - x_2)$. Further, $g_2(X, Y)$ and $g_3(X, Y)$ are obtained from $(X - x_1)(Y - y_2), (Y - y_1)(Y - y_2) \in \varphi^{-1}(L(\infty \cdot \infty - (P_1 + P_2))).$

(ii) Since $P_1 = P_2$, we have $l(X, Y) = F_Y(x, y)(Y - y) + F_X(x, y)(X - x)$.

If $F_Y(x,y) = S_0 = 0$, then $(l)^+ = (X-x)^+ \ge 2P$. It follows that $g_1(X,Y) = (X-x)^2$ and $g_2(X,Y) = (X-x)(Y-y)$. For a polynomial $(Y-y)^3 - F(X,Y) \in I$, the remainder $r(X,Y) = 3y(Y-y)^2 + X - x$ on division by $\{g_1(X,Y), g_2(X,Y)\}\$ is also in *I*. Since *D* is a normal divisor, we have $y \neq 0$ by Proposition 3.2. Thus $LM(r(X, Y)) = Y^2$. It follows that $g_3(X, Y) = (Y - y)^2 + (3y)^{-1}(X - x)$.

If $F_Y(x,y) = S_0 \neq 0$, then $(l)^+ \geq 2P$ with $LM(l(X,Y)) = Y$. It follows that $l(X,Y)(X-x), l(X,Y)(Y-y) \in I$ with the leading monomials XY and Y². For a polynomial $F(X,Y) - F_Y(x,y)^{-1} l(X,Y)(Y-y)Y \in I$, the remainder $r(X,Y) = S_0^{-2} (S_0^2 T_2 +$ $3yT_1^2 - S_0S_1T_1(X - x)^2 + l(X, Y)$ on division by $\{l(X, Y)(X - x), l(X, Y)(Y - y)\}$ is also in I. Since D is a normal divisor, we have $S_0^2T_2 + 3yT_1^2 - S_0S_1T_1 \neq 0$ by Proposition 3.2. Thus $LM(r(X, Y)) = X^2$. It implies that $g_1(X, Y) = (X - x)^2 + (S_0^2 T_2 + 3yT_1^2 S_0S_1T_1$ ⁻¹ $S_0^2l(X,Y)$. Further, $g_2(X,Y)$ and $g_3(X,Y)$ are obtained from a Groebner basis $\{q_1(X, Y), l(X, Y)(X - x), l(X, Y)(Y - y)\}.$

3.3 Inverse of a normal divisor

In this subsection, we give the inverse of normal divisors of C. Let $D = E - n \cdot \infty \in$ $Div_K^0(C)$ be a divisor with $E = D^+$ and let G be the reduced Groebner basis for $\varphi^{-1}(I_D)$. Let $D' = E' - n' \cdot \infty$ be the normal divisor such that $D' \sim -D$ and let G' be the reduced Groebner basis for $\varphi^{-1}(I_{D'})$. Then $D' = -D + (g_1)$ for the element $g_1(X, Y)$ with the smallest leading monomial but Y^3 in G, where (g_1) denotes the divisor $(\varphi(g_1(X, Y))).$ Since $E' = (g_1)^+ - E$, $\varphi^{-1}(I_{D'})$ is

$$
\{h(X,Y) \mid h(X,Y)g_i(X,Y) \in \langle g_1(X,Y), F(X,Y) \rangle \text{ for all } g_i(X,Y) \in G\}.
$$

In particular, if D is a normal divisor, then $n' = \deg(g_1)^+ - n$ and $g_1(X, Y)$ is also the element with the smallest leading monomial in G' .

For example, let $D = E - 3 \cdot \infty$ be a normal divisor with

$$
G = \{g_1(X, Y), g_2(X, Y), g_3(X, Y)\}\
$$

such that $LM(g_1(X, Y)) = X^2$. Then $D' = -D + (g_1)$ and $\deg E' = 3$. Thus

$$
G' = \{h_1(X, Y) = g_1(X, Y), h_2(X, Y), h_3(X, Y)\}\
$$

with $h_2(X, Y) = XY + A_2Y + B_2X + C_2$, $h_3(X, Y) = Y^2 + A_3Y + B_3X + C_3$ for $A_i, B_i, C_i \in$ K $(i = 2, 3)$ such that $h_i(X, Y)g_k(X, Y) \in \langle g_1(X, Y), F(X, Y) \rangle$ for all $j, k = 2, 3$.

For a normal divisor D , we have the following on a normal divisor D' such that $D' \sim -D$:

Theorem 3.6 Let $D \in Div_K^0(C)$ be a normal divisor, and let G be the reduced Groebner basis for the normal ideal $\varphi^{-1}(I_D)$. Let D' be the normal divisor such that D' $\sim -D$. Then the reduced Groebner basis G' for the normal ideal $\varphi^{-1}(I_{D'})$ is as follows: (a) If $G = \{1\}$, then $G' = \{1\}$; (b) If $G = \{g_1(X, Y) = X + c_1, g_2(X, Y) = Y + c_2\}$, then $G' = \{h_1(X,Y) = X + c_1, h_2(X,Y) = Y^2 - c_2Y + c_2^2 + s_2c_1^2 - s_1c_1 + s_0\};$ (c) If $G = \{g_1(X, Y) = X + c_1, g_2(X, Y) = Y^2 + a_2Y + c_2\}$, then $G' = \{h_1(X, Y) = X + c_1, h_2(X, Y) = Y - a_2\};$ (d) If $G = \{g_1(X, Y) = Y + b_1X + c_1, g_2(X, Y) = X^2 + b_2X + c_2\}$, then $G' = \{h_1(X, Y), h_2(X, Y)\}\$ for

$$
h_1(X,Y) = Y + b_1X + c_1,
$$

\n
$$
h_2(X,Y) = X^2 + (-b_1^3 - b_2 + t_3 - b_1s_2)X
$$

\n
$$
+b_1^3b_2 + b_2^2 - 3b_1^2c_1 - c_2 + t_2 - b_2t_3 - b_1s_1 + b_1b_2s_2 - c_1s_2;
$$

(e) If $G = \{g_1(X, Y), g_2(X, Y), g_3(X, Y)\}\$ for

$$
g_1(X,Y) = X^2 + a_1Y + b_1X + c_1,
$$

\n
$$
g_2(X,Y) = XY + a_2Y + b_2X + c_2,
$$

\n
$$
g_3(X,Y) = Y^2 + a_3Y + b_3X + c_3,
$$

then
$$
G' = \{h_1(X, Y), h_2(X, Y), h_3(X, Y)\}
$$
 for
\n
$$
h_1(X, Y) = X^2 + a_1Y + b_1X + c_1,
$$
\n
$$
h_2(X, Y) = XY + (-a_2 + b_1)Y + (a_1^2 - a_3 - a_1s_2)X
$$
\n
$$
-a_1^2a_2 + a_2a_3 - a_1^2b_1 - a_3b_1 + a_1b_3 - a_1s_1 + a_1a_2s_2 + a_1^2t_3,
$$
\n
$$
h_3(X, Y) = Y^2 + (a_1^2 - b_2 - a_1s_2)Y + (2a_1b_1 - b_3 + s_1 - b_1s_2 - a_1t_3)X
$$
\n
$$
-2a_1a_2^2 + 2a_1^2a_3 + 2a_1a_2b_1 - a_1b_1^2 - 3a_1^2b_2 + b_2^2 + a_2b_3 - b_1b_3 + s_0 + a_2^2s_2
$$
\n
$$
-a_1a_3s_2 - a_2b_1s_2 + 2a_1b_2s_2 - a_1t_2 + a_1b_1t_3.
$$

3.4 Addition of normal divisors

In this subsection, we consider the addition of normal divisors in C. Let $D_1 =$ $E_1 - n_1 \cdot \infty$ and $D_2 = E_2 - n_2 \cdot \infty$ be normal divisors of C with $E_1 = D_1^+$ and $E_2 = D_2^+$. Let $D' = E' - n' \cdot \infty$ be a normal divisor such that $D' \sim -(D_1 + D_2)$ and $D = E - n \cdot \infty$ be a normal divisor such that $D \sim D_1 + D_2$. In this subsection, we use the following notation:

$$
I'
$$
: a normal ideal $\varphi^{-1}(L(\infty \cdot \infty - E'))$, I : a normal ideal $\varphi^{-1}(L(\infty \cdot \infty - E))$, G_1 : a reduced Groebner basis for $\varphi^{-1}(L(\infty \cdot \infty - E_1))$, G_2 : a reduced Groebner basis for $\varphi^{-1}(L(\infty \cdot \infty - E_2))$, G_g : a set $\{f_i(X, Y)g_j(X, Y), F(X, Y) \mid f_i(X, Y) \in G_1, g_j(X, Y) \in G_2\}$, G : a reduced Groebner basis for I , H : a reduced Groebner basis for $\varphi^{-1}(L(\infty \cdot \infty - (E_1 + E_2)))$, $h_1(X, Y)$: a polynomial with the smallest leading monomial in H , $v_1(X, Y)$: a monic polynomial with the smallest leading monomial in I' , f : a function $\varphi(f(X, Y))$ for a polynomial $f(X, Y)$.

The final purpose of this subsection is to find G for the given G_1 and G_2 .

Since G_g generates $\varphi^{-1}(L(\infty \cdot \infty - (E_1 + E_2)))$, H is obtained by the algorithm due to Buchberger for computing a Groebner basis using S-polynomials. H satisfies that $\Delta(H) \subset \Delta(G_q)$ with $\delta(H) = n_1 + n_2$. Since $h_1 \in L(m \cdot \infty - (D_1 + D_2))$ with the smallest integer m such that $l(m \cdot \infty - (D_1 + D_2)) = 1$, we have $n_1 + n_2 \le \deg(h_1)^+ = n_1 + n_2 + m \le$ $n_1 + n_2 + 3$. For the polynomial $h_1(X, Y)$, we have $D' = -(D_1 + D_2) + (h_1)$ and

$$
I' = \{ v(X, Y) \mid v(X, Y)h_i(X, Y) \in \langle h_1(X, Y), F(X, Y) \rangle \text{ for all } h_i(X, Y) \in H \}.
$$

If LM(H) is obtained, LM($v_1(X, Y)$) is determined by $n' = \deg(h_1)^+ - (n_1 + n_2)$ and $LM(v_1(X, Y)h_i(X, Y)) \in LM(\langle h_1(X, Y), F(X, Y) \rangle)$ for all $h_i(X, Y) \in H$. Further, LM(G) is determined with $LM(v_1(X, Y))$ and n' by Theorem 3.6. Thus, $LM(G)$ is determined by $LM(H)$ when G_1 and G_2 are given. As a result, we have the following on the relation between $LM(H)$ and $LM(G)$ for the given G_1 and G_2 :

Since $v_1(X, Y)h_i(X, Y) \in \langle h_1(X, Y), F(X, Y) \rangle$, we can write

$$
v_1(X,Y)h_i(X,Y) = q_{1,i}(X,Y)h_1(X,Y) + q_{2,i}(X,Y)F(X,Y)
$$

with $q_{1,i}(X, Y), q_{2,i}(X, Y) \in K[X, Y]$. It follows that $(v_1) + (h_i) = (q_{1,i}) + (h_1)$. Thus $(q_{1,i})^+ = (v_1)^+ + (h_i)^+ - (h_1)^+$. Since $(h_i)^+ \geq E_1 + E_2$, we have $q_{1,i} \in L(\infty \cdot \infty -$ E). Thus $q_{1,i}(X,Y) \in I$. Conversely, if $f(X,Y) \in I$, then $(f)^{+} \geq E$. For $H =$

 $\{h_1(X, Y), \ldots, h_t(X, Y)\}\,$, it follows that

$$
(f)^{+} \geq E_1 + E_2 - (h_1)^{+} + (v_1)^{+}
$$

= $\min\{(q_{1,i})^{+} | i = 1, \dots, t\}.$

It implies that the function $\varphi(f(X, Y)) \in \langle q_{1,1}, \cdots, q_{1,t} \rangle$. Thus

$$
f(X,Y) \in \langle q_{1,1}(X,Y), \cdots, q_{1,t}(X,Y), F(X,Y) \rangle.
$$

As a result,

$$
I = \langle q_{1,1}(X,Y), \cdots, q_{1,t}(X,Y), F(X,Y) \rangle.
$$

References

- [1] L. M. Adleman, J. DeMarrais, and M. D. Huang, A subexponential Algorithm for Discrete Logarithms over the Rational Subgroup of the Jacobians of Large Genus Hyperelliptic Curves over Finite Fields, Algorithmic Number Theory, Lect. Notes Comp. Sci., 877, Springer-Verlag, pp. 28–40.
- [2] S. Arita, Algorithms for computation in Jacobian group of C_{ab} curve and their application to discrete-log-based public key cryptosystems, The mathematics of public key cryptography, Fields Institute A. Odlyzko et al (eds.), 1999.
- [3] D. G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comp., 48(177), pp. 95–101 (1987).
- [4] D. Cox, J. Little, D. O'shea, Ideals, Varieties, and Algorithms, Springer-Verlag, Berlin, 1997.
- [5] W. Fulton, Algebraic Curves, Benjamin, New York, 1969.
- [6] S. D. Galbraith, S. M. Paulus, and N. P. Smart, Arithmetic on Superelliptic Curves, Math. Comp. vol. 71, no. 237, pp. 393–405, 2000.
- [7] V. D. Goppa,Geometry and Codes, Kluwer Academic Publishers, 1988.
- [8] R. Matsumoto, The Cab curve a generalization of the Weierstrass form to arbitrary plane curves, http://www.rmatsumoto.org/cab/html.
- [9] S. Miura, Algebraic geometric codes on certain plane curves, Trans. IEICE J75-A (1992), no. 11, pp. 1735–1745 (Japanese).
- [10] S. Miura, Linear codes on affine algebraic curves, Trans. IEICE J81-A (1998), no. 10, pp. 1398–1421, (Japanese).
- [11] R. Pellikaan, On the existence of order functions, J. Statistical Planning and Inference, no. 94, pp. 287–301, 2001.
- [12] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag.