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1 Introduction

In recent years, certain algebraic curves, for example elliptic curves and hyperelliptic

curves, are drawing attention in applications to cryptography. To use algebraic curves in

cryptography, we require a fast algorithm on addition in the Jacobian. In elliptic curve

cryptosystems, a point of the Jacobian can be uniquely represented by a point of the

curve. In hyperelliptic curve cryptosystems, a point of the Jacobian can be uniquely

represented by Mumford’s form, and the known algorithms on computing in the Jacobian

use Mumford’s form. S. Miura found a family of algebraic curves named Cab curves,

which include elliptic curves and hyperelliptic curves, and S. Arita provided an algorithm

on addition in the Jacobian of a Cab curve.

Algebraic curves of large genus suffer efficient attacks such as function sieves and their

variants. The genus of a C34 curve is 3, and it is the smallest genus of a non-elliptic,

non-hyperelliptic Cab curve. For this reason, we study C34 curves. Especially, we study

the addition in the Jacobian of a C34 curve.

In this paper, for a C34 curve defined over a perfect field, we give a unique represen-

tation on the points of the Jacobian by normal divisors. Further, we express a normal

divisor by the reduced Groebner basis with respect to the Cab order for the corresponding

ideal of K[X,Y ]. Such an ideal is called a normal ideal. We give a condition of a poly-

nomial subset to be a reduced Groebner basis for a normal ideal, and we give an explicit

expression of the reduced Groebner basis for a given normal ideal. We give the reduced

Groebner basis for the normal ideal corresponding to the normal divisor which is linearly

equivalent to −D for a given normal divisor D. Finally, we study the sum of normal

divisors.

Throughout this paper, K denotes a perfect field and K denotes the algebraic closure

of K.

∗Yasuo Morita: Mathematical Institute, Tohoku University

1



2 Preliminaries

In this section, we review the Jacobian of an algebraic curve and Cab curves.

2.1 Jacobian of an algebraic curve

Let C be a plane curve defined over K and let K(C) denote the function field of

C. Then the divisor group Div(C) of C is defined to be the free abelian group generated

by the points of C. Thus a divisor D ∈ Div(C) is a formal sum D =
∑

P∈C nP P with

nP ∈ Z and nP = 0 for all but a finite number of P ∈ C. The degree of a divisor

D =
∑

P∈C nP P is defined by deg D =
∑

P∈C nP . The divisors of degree 0 form a subgroup

Div0(C) = {D ∈ Div(C) | deg D = 0} of Div(C). Let the Galois group GK/K act on

Div(C) as Dσ =
∑

P∈C nP P σ. Then D is defined over K if and only if Dσ = D for

all σ ∈ GK/K . We denote by DivK(C) the group of divisors defined over K and put

Div0
K(C) = Div0(C) ∩ DivK(C). A divisor D ∈ Div(C) is principal if it has the form

D = (f) =
∑

P∈C ordP (f)P for some f ∈ K(C)
∗
, where ordP (f) denotes the order of f

at P . The set of principal divisors of C forms a subgroup of Div0(C). Two divisors D1

and D2 are linearly equivalent if D1 −D2 is principal, and it is denoted as D1 ∼ D2. The

Jacobian group of C, denoted J(C), is the quotient group of Div0(C) by the subgroup of

principal divisors. The invariant subgroup JK(C) of J(C) under the action of GK/K is

called the Jacobian group of C defined over K.

A divisor D =
∑

P∈C nP P is said to be effective if each nP ≥ 0. We write
∑

P∈C nP P ≥
∑

P∈C mP P if nP ≥ mP holds for any P . For a divisor D =
∑

P∈C nP P , D+ =
∑

nP >0 nP P

and D− =
∑

nP <0(−nP )P are the zero divisor and the pole divisor of D, respectively. For

a divisor D defined over K, we set

L(D) := {f ∈ K(C)∗ | (f) ≥ −D} ∪ {0},

and we denote the dimension dimK L(D) by l(D).

2.2 Cab curves

In this subsection, we review the Cab curves.

Definition 2.1 Let a and b be relatively prime positive integers. Then a Cab curve defined

over K is a nonsingular curve defined by F (X,Y ) = 0, where F (X,Y ) has the form

F (X,Y ) = α0,aY
a + αb,0X

b +
∑

ai+bj<ab

αi,jX
iY j ∈ K[X,Y ]

for nonzero α0,a, αb,0 ∈ K.
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Since gcd(a, b) = 1, we have m,n ∈ Z such that am + bn = 1. Then, multiplying

F (X,Y ) by α
(a−1)bn
0,a α−am

b,0 and replacing X and Y by α
−(a−1)n
0,a α−n

b,0 X and α
−(m+bn)
0,a αm

b,0Y ,

respectively, we have a simplified equation F1(X,Y ) = 0, where

F1(X,Y ) := Y a + Xb +
∑

ai+bj<ab

βi,jX
iY j ∈ K[X,Y ].

Throughout this subsection, let C be a Cab curve defined by F (X,Y ) = 0 with a

polynomial F (X,Y ) ∈ K[X,Y ]. Let RK(C) denote the coordinate ring of C. Then

(a) C is an absolutely irreducible algebraic curve;

(b) There exists exactly one K-rational place ∞ at infinity, which implies that the degree

of ∞ is 1. Furthermore, the pole divisors of X and Y are a · ∞ and b · ∞, respectively;

(c) For m ∈ Z≥0, {X
iY j mod F (X,Y ) | 0 ≤ i, 0 ≤ j ≤ a − 1, ai + bj ≤ m} is a basis of a

vector space L(m · ∞) over K.

For a fixed monomial order on K[X,Y ], the multidegree MD(f) of a polynomial f =
∑

α aαXα1Y α2 is max{α = (α1, α2) ∈ Z2
≥0 | aα 6= 0}, where the maximum is taken with

respect to the monomial order. For a polynomial f , we let LC(f), LM(f) and LT(f) denote

the leading coefficient, the leading monomial and the leading term of f , respectively. For

a nonempty subset G of K[X,Y ], we let LT(G) and LM(G) denote the set of leading

terms and the set of leading monomials of elements of G, respectively.

Now, we recall the definition of Groebner bases.

Definition 2.2 Fix a monomial order. A finite subset G = {g1, . . . , gt} of an ideal I

in K[X,Y ] is called a Groebner basis if 〈LT(g1), . . . , LT(gt)〉 = 〈LT(I)〉. In particular, a

Groebner basis satisfying

(i) LC(g) = 1 for all g ∈ G,

(ii) For g ∈ G, any term of g is not in 〈LT(G − {g})〉

is called a reduced Groebner basis.

Fix a monomial order on K[X,Y ] and let I 6= {0} be an ideal in K[X,Y ]. Then I

has a unique reduced Groebner basis. Furthermore, any Groebner basis for I generates

I. On division by a Groebner basis G, the remainder is uniquely determined no matter

how the elements of G are listed.

We introduce the monomial order named Cab order, which is of great significance in

Cab curves.

Definition 2.3 (Cab order) Let a and b be relatively prime positive integers with a < b.

For α = (α1, α2), β = (β1, β2) ∈ Z2
≥0, we write α > β if

aα1 + bα2 > aβ1 + bβ2, or aα1 + bα2 = aβ1 + bβ2 and α1 < β1.
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It is easily known that this monomial order corresponds to pole degrees of functions

in RK(C). We use only this monomial order in this paper.

We consider representations of JK(C). Let g(C) denote the genus of C.

Definition 2.4 A divisor D = E − n · ∞ ∈ Div0
K(C) with an effective divisor E prime

to ∞ and 0 ≤ n ≤ g(C) is called a semi-normal divisor. In particular, a semi-normal

divisor D = E −n ·∞ such that n = min{n′ | E ′−n′ ·∞ ∼ D,E ′ ≥ 0} is called a normal

divisor.

It is possible that a semi-normal divisor may be linearly equivalent to another semi-

normal divisor. But, every divisor D ∈ Div0
K(C) has a unique normal divisor Dn such that

Dn ∼ D. In fact, Dn = D+(f) for a nonzero function f ∈ L(D+m ·∞) with the smallest

integer m such that l(D + m · ∞) = 1. In particular, for a divisor D = D+ − n · ∞ ∈

Div0
K(C), the normal divisor D′ such that D′ ∼ −D is −D + (f) for a nonzero function

f ∈ L(−D + m ·∞) with the smallest integer m such that l(−D + m ·∞) = 1. It implies

that D′ = −D+(f) for a nonzero function f ∈ RK(C) with the smallest pole degree such

that (f)+ ≥ D+.

The Jacobian group JK(C) is isomorphic to the ideal class group H(RK(C)) of RK(C)

by the isomorphism

Φ : JK(C) −→ H(RK(C))

[E − deg E · ∞] 7−→ [L(∞ ·∞− E)],

where, for any class [D] in JK(C), we choose an effective divisor E which satisfies that

D ∼ E − deg E · ∞. For a divisor D ∈ Div0
K(C) with the pole points only at infinity, we

denote by ID the ideal L(∞ ·∞− D+) of RK(C).

Next,we consider the homomorphism

ϕ : K[X,Y ] −→ RK(C)

f(X,Y ) 7−→ f(X,Y ) mod F (X,Y ).

It is well-known that every ideal I of RK(C) is one-to-one correspondent to an ideal

ϕ−1(I) of K[X,Y ] containing ker ϕ = 〈F (X,Y )〉. For a normal divisor D ∈ Div0
K(C), we

call the ideal ϕ−1(ID) of K[X,Y ] a normal ideal of C.

For an ideal I of K[X,Y ], we define ∆(I) as {X iY j ∈ K[X,Y ] | X iY j /∈ LM(I)} and

we let δ(I) denote the number of elements in ∆(I). For a subset G = {g1, . . . , gm} of

K[X,Y ], we define ∆(G) as {X iY j | (i, j) ∈ Z2
≥0 −∪m

i=1(MD(gi) + Z2
≥0)} and we let δ(G)

denote the number of elements in ∆(G). Then, for a subset G = {g1, . . . , gt} of an ideal

I satisfying δ(I) < ∞, G is a Groebner basis for I if and only if δ(I) = δ(G).

Now, we quote the following, which plays an important role in this paper:
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Proposition 2.5 For a divisor D = E − n · ∞ ∈ Div0
K(C) with an effective divisor E

prime to ∞, we have

deg E = δ(I),

where I is the ideal ϕ−1(ID) of K[X,Y ].

3 C34 curves

In this section, we consider C34 curves. Throughout this section, let C be a C34 curve

defined by

F (X,Y ) := Y 3 + γ2(X)Y + γ3(X) = 0

with γ2(X) = s2X
2 + s1X + s0, γ3(X) = X4 + t3X

3 + t2X
2 + t1X + t0 ∈ K[X]. Then the

genus of C is equal to 3.

3.1 Normal divisors

In this subsection, we give a condition for a semi-normal divisor to be a normal divisor

of C. The pole divisors of X and Y in RK(C) are 3 ·∞ and 4 ·∞, respectively. It follows

that:

Lemma 3.1 Let a, b, c be elements of K. Then the principal divisor (X+a) can be written

as (X+a) = P1+P2+P3−3·∞ with P1, P2, P3 ∈ C, and the principal divisor (Y +bX+c)

can be written as (Y + bX + c) = Q1 + Q2 + Q3 + Q4 − 4 · ∞ with Q1, Q2, Q3, Q4 ∈ C.

The following proposition gives a condition for a semi-normal divisor D ∈ Div0
K(C) to

be a normal divisor.

Proposition 3.2 Let D ∈ Div0
K(C) be a semi-normal divisor and let n = deg D+. Then

D is a normal divisor if and only if either

(i) 0 ≤ n ≤ 2, or

(ii) n = 3 and ID contains no function of the form X + a or Y + bX + c for a, b, c ∈ K.

Proof. The semi-normal divisor D is a normal divisor if and only if D is not linearly

equivalent to any semi-normal divisor with a pole degree which is smaller than n.

If n = 0, then D = 0 is a normal divisor.

If n = 1 and D is not a normal divisor, then D ∼ 0. It follows that D = (f) for

some f ∈ K(C)∗. Then f is in L(1 · ∞) − L(0 · ∞). But it is a contradition because

L(1 · ∞) − L(0 · ∞) = ∅.

If n = 2 and D is not a normal divisor, then D ∼ 0 or D ∼ P −∞ for a point P ∈ C.

First, it is impossible that D ∼ 0, since L(2 · ∞) − L(1 · ∞) = ∅. Second, suppose that
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D ∼ P − ∞ for P = (x, y) ∈ C. Then D − P + ∞ = (f) for some f ∈ K(C)∗. Since

(f)+(X−x) = D++P2+P3−4·∞ for P2, P3 ∈ C such that (X−x) = P +P2+P3−3·∞. It

follows that the function f ·(X−x) ∈ L(4 ·∞)−L(3 ·∞). This implies that (f ·(X−x)) =

(Y + bX + c) for b, c ∈ K. Thus we have Y + bX + c,X − x ∈ L(∞ · ∞ − (P2 + P3)).

It is a contradiction because there is only one line through with P1 and P2, which is the

tangent line if P1 = P2.

If n = 3 and D is not a normal divisor, then D ∼ 0, D ∼ P−∞, or D ∼ Q1+Q2−2·∞

for P,Q1, Q2 ∈ C. First, suppose that D ∼ 0. Then D = (f) for some f ∈ K(C)∗. It

follows that f ∈ L(3 ·∞)−L(2 ·∞). This implies that (f) = (X +a), i.e. X +a ∈ ID, for

a ∈ K. Second, suppose that D ∼ P −∞. Then D − P + ∞ = (f) for some f ∈ K(C)∗.

For P = (x, y) ∈ C, (f) + (X − x) = D+ + P2 + P3 − 5 · ∞ for P2, P3 ∈ C such that

(X−x) = P +P2+P3−3 ·∞. It follows that f ·(X−x) ∈ L(5 ·∞)−L(4 ·∞) = ∅, which is

a contradiction. Last, suppose that D ∼ Q1 +Q2−2 ·∞. Then D−Q1−Q2 +2 ·∞ = (f)

for some f ∈ K(C)∗. Let g be the defining equation of the line through with Q1 and Q2,

which is the tangent line if Q1 = Q2. Then either g = X+a for a ∈ K or g = Y +bX+c for

b, c ∈ K. For g = Y +bX +c, we can write (g) = Q1+Q2+Q3+Q4−4 ·∞ for Q3, Q4 ∈ C.

Then (fg) = D+ +Q3 +Q4−5 ·∞, which is a contradiction since L(5 ·∞)−L(4 ·∞) = ∅.

Thus g = X +a. Let (g) = Q1 +Q2 +Q5−3 ·∞ for Q5 ∈ C. Then (fg) = D++Q5−4 ·∞.

It follows that fg ∈ L(4 ·∞)−L(3 ·∞). Thus (fg) = (Y +b′X +c′), i.e. Y +b′X +c′ ∈ ID,

for b′, c′ ∈ K. Therefore, we proved that if D is not a normal divisor, there is a function

f ∈ ID of the form X + a or Y + bX + c for a, b, c ∈ K.

Conversely, if n = 3 and there is a function f = X + a ∈ ID for a ∈ K. Then we

have (f)+ = D+, since (f)+ ≥ D+ with deg(f)+ = deg D+. It implies that (f) = D,

and D ∼ 0. Thus D is not a normal divisor. If n = 3 and there is a function f =

Y + bX + c ∈ ID for b, c ∈ K, then (f) = D+ + P − 4 · ∞ for P = (x, y) ∈ C. It follows

that D−(f)+(X−x) = P2+P3−2·∞ for P2, P3 ∈ C such that (X−x) = P+P2+P3−3·∞.

It implies that D ∼ P1 + P2 − 2 · ∞. Thus D is not a normal divisor. 2

3.2 A Groebner basis for a normal ideal

In this subsection, we give a condition of an ideal of K[X,Y ] to be a normal ideal of

C, and a condition of a polynomial subset of K[X,Y ] to be a reduced Groebner basis for

a normal ideal of C. Furthermore, we give an expression of the reduced Groebner basis

for a normal divisor D =
∑

Pi − n · ∞ ∈ Div0
K(C).

The following lemma, which is followed from Proposition 3.2, states a condition of a

polynomial ideal to be a normal ideal of C, i.e. ϕ−1(L(∞·∞−D+)) for a normal divisor

D ∈ Div0
K(C).

Lemma 3.3 Let I 6= {0} be an ideal in K[X,Y ] and let G be the reduced Groebner basis

for I. Then I is a normal ideal of C if and only if G satisfies the following two conditions:
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(a) The remainder F
G

of F (X,Y ) on division by G is 0;

(b) Either 0 ≤ δ(G) ≤ 2, or δ(G) = 3 and LM(G) = {X2, XY, Y 2}.

It follows that a polynomial subset G 6= {0} of K[X,Y ] is the reduced Groebner basis

for a normal ideal of C if and only if G is the reduced Groebner basis satisfying the

conditions (a), (b) of Lemma 3.3. Thus we have:

Proposition 3.4 Let G 6= {0} be a polynomial subset of K[X,Y ]. Let ai, bi, ci be elements

of K. Then G is a reduced Groebner basis for a normal ideal of C if and only if G is one

of the following:

(a) G = {1};

(b) G = {g1(X,Y ) = X + c1, g2(X,Y ) = Y + c2} and satisfies F (−c1,−c2) = 0;

(c) G = {g1(X,Y ) = X+c1, g2(X,Y ) = Y 2+a2Y +c2} and satisfies g2(X,Y ) | F (−c1, Y );

(d) G = {g1(X,Y ) = Y + b1X + c1, g2(X,Y ) = X2 + b2X + c2} and satisfies

g2(X,Y ) | F (X,−b1X − c1);

(e) G = {g1(X,Y ), g2(X,Y ), g3(X,Y )} for

g1(X,Y ) = X2 +a1Y + b1X + c1,

g2(X,Y ) = XY +a2Y + b2X + c2,

g3(X,Y ) = Y 2 +a3Y + b3X + c3,

satisfying

c1 = −a2
2 + a2b1 − a1b2 + a1a3,

c2 = a2b2 − a1b3,

c3 = −a2b3 − b2
2 + a3b2 + b1b3,

and
a1 6= 0 ⇒ g2(X, f(X)) | F (X, f(X)),

b3 6= 0 ⇒ g2(g(Y ), Y ) | F (g(Y ), Y ),

a1 = b3 = 0 ⇒ g1(X,Y ) | F (X,−b2), g3(X,Y ) | F (−a2, Y ),

where f(X) = −a−1
1 (X2 + b1X + c1) and g(Y ) = −b−1

3 (Y 2 + a3Y + c3).

Proof. Let F
G

denote the remainder of F (X,Y ) on division by G. Then it is enough to

find a reduced Groebner basis G such that F
G

is equal to 0, and LM(G) is {1}, {X,Y },

{X,Y 2}, {Y,X2}, or {X2, XY, Y 2} by Lemma 3.3. We wish to find a condition that

F
G

= 0 is satisfied by a reduced Groebner basis G with a set of leading monomials of the

above form.

(a) If G is a reduced Groebner basis with LM(G) = {1}, then G = {1}.

(b) If G is a reduced Groebner basis with LM(G) = {X,Y }, then the elements of G

are g1(X,Y ) = X + c1, g2(X,Y ) = Y + c2 for c1, c2 ∈ K. For the remainder F
G

= r0 ∈ K,

we can write

F (X,Y ) = q1(X,Y )g1(X,Y ) + q2(X,Y )g2(X,Y ) + r0,
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with q1(X,Y ), q2(X,Y ) ∈ K[X,Y ]. Thus F
G

= 0 if and only if F (−c1,−c2) = 0.

(c) If G is a reduced Groebner basis with LM(G) = {X,Y 2}, then the elements of G

are g1(X,Y ) = X + c1, g2(X,Y ) = Y 2 + a2Y + c2 for a2, c1, c2 ∈ K. For the remainder

F
G

= r1Y + r0, we can write

F (X,Y ) = q1(X,Y )g1(X,Y ) + q2(X,Y )g2(X,Y ) + r1Y + r0

with q1(X,Y ), q2(X,Y ) ∈ K[X,Y ]. Since

F (−c1, Y ) = q2(−c1, Y )g2(−c1, Y ) + r1Y + r0,

the remainder of F (−c1, Y ) on division by g2(−c1, Y ) is r1Y + r0. Thus F
G

= 0 if and

only if F (−c1, Y ) is divisible by g2(−c1, Y ) = g2(X,Y ).

(d) If G is a reduced Groebner basis with LM(G) = {Y,X2}, then the elements of G

are g1(X,Y ) = Y + b1X + c1, g2(X,Y ) = X2 + b2X + c2 for b1, b2, c1, c2 ∈ K. For the

remainder F
G

= r1X + r0, we can write

F (X,Y ) = q1(X,Y )g1(X, , Y ) + q2(X,Y )g2(X,Y ) + r1X + r0

with q1(X,Y ), q2(X,Y ) ∈ K[X,Y ]. Since

F (X,−b1X − c1) = q2(X,−b1X − c1)g2(X,−b1X − c1) + r1X + r0,

the remainder of F (X,−b1X − c1) on division by g2(X,−b1X − c1) is r1X + r0. Thus

F
G

= 0 if and only if F (X,−b1X − c1) is divisible by g2(X,−b1X − c1) = g2(X,Y ).

(e) If G is a reduced Groebner basis with LM(G) = {X2, XY, Y 2}, then G has the

elements
g1(X,Y ) = X2 +a1Y + b1X + c1,

g2(X,Y ) = XY +a2Y + b2X + c2,

g3(X,Y ) = Y 2 +a3Y + b3X + c3,

with ai, bi, ci ∈ K for i = 1, 2, 3 satisfying that the remainder of S-polynomial

S(gj(X,Y ), gk(X,Y )) = lcm(LM(gj), LM(gk))

(

gj(X,Y )

LT(gj(X,Y ))
−

gk(X,Y )

LT(gk(X,Y ))

)

,

on division by G is equal to 0 for all 1 ≤ j 6= k ≤ 3, where lcm(LM(gj), LM(gk)) denotes

the least common multiple of LM(gj(X,Y )) and LM(gk(X,Y )). It follows that

c1 = −a2
2 + a2b1 − a1b2 + a1a3,

c2 = a2b2 − a1b3,

c3 = −a2b3 − b2
2 + a3b2 + b1b3.

(2.1)

For the remainder F
G

= r2Y + r1X + r0, we can write

F (X,Y ) = q1(X,Y )g1(X,Y ) + q2(X,Y )g2(X,Y ) + q3(X,Y )g3(X,Y )

+r2Y + r1X + r0

(2.2)
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with q1(X,Y ), q2(X,Y ), q3(X,Y ) ∈ K[X,Y ].

If a1 6= 0, (2.2) can be written as

F (X,Y ) = q′1(X,Y )g1(X,Y ) + q′2(X,Y )g2(X,Y ) + r2Y + r1X + r0

for q′1(X,Y ), q′2(X,Y ) ∈ K[X,Y ], since g3(X,Y ) = a−1
1 (Y + b2)g1(X,Y ) − a−1

1 (X − a2 +

b1)g2(X,Y ). If we substitute f(X) = −a−1
1 (X2 + b1X + c1) for Y , then

F (X, f(X)) = q′2(X, f(X))g2(X, f(X)) + r2f(X) + r1X + r0.

It follows that the remainder of F (X, f(X)) on division by g2(X, f(X)) is r2f(X)+r1X +

r0. Thus F
G

= 0 if and only if F (X, f(X)) is divisible by g2(X, f(X)).

If b3 6= 0, (2.2) can be written as

F (X,Y ) = q′′2(X,Y )g2(X,Y ) + q′′3(X,Y )g3(X,Y ) + r2Y + r1X + r0

for q′′2(X,Y ), q′′3(X,Y ) ∈ K[X,Y ], since g1(X,Y ) = −b−1
3 (Y − b2 + a3)g2(X,Y )+ b−1

3 (X +

a2)g3(X,Y ). If we substitute g(Y ) = −b−1
3 (Y 2 + a3Y + c3) for X, then

F (g(Y ), Y ) = q′′2(g(Y ), Y )g2(g(Y ), Y ) + r2Y + r1g(Y ) + r0.

It follows that the remainder of F (g(Y ), Y ) on division by g2(g(Y ), Y ) is r2Y +r1g(Y )+r0.

Thus F
G

= 0 if and only if F (g(Y ), Y ) is divisible by g2(g(Y ), Y ).

If a1 = b3 = 0, then

g1(X,Y ) = (X + a2)(X − a2 + b1),

g2(X,Y ) = (X + a2)(Y + b2),

g3(X,Y ) = (Y + b2)(Y − b2 + a3)

by (2.1). Applying them in (2.2), we have

F (−a2, Y ) = q3(−a2, Y )g3(−a2, Y ) + r2Y − a2r1 + r0

and

F (X,−b2) = q1(X,−b2)g1(X,−b2) + r1X − b2r2 + r0.

Thus F
G

= 0 if and only if g3(X,Y ) | F (−a2, Y ) and g1(X,Y ) | F (X,−b2). 2

The following is on the reduced Groebner basis for a given normal divisor.

Theorem 3.5 Let D =
∑n

i=1 Pi − n · ∞ ∈ Div0
K(C) be a normal divisor, where Pi =

(xi, yi) ∈ C for i = 1, . . . , n. Let

l(X,Y ) =







(x2 − x1)(Y − y1) − (y2 − y1)(X − x1) if P1 6= P2;

FY (x, y)(Y − y) + FX(x, y)(X − x) if P1 = P2 = (x, y),
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where FX (resp. FY ) denotes the partial derivative of F (X,Y ) with respect to X (resp.

Y ). Let I be the normal ideal ϕ−1(ID) and let G be the reduced Groebner basis for I.

Then G satisfies the following:

(a) If D = 0, then G = {1};

(b) If D = P1 −∞, then G = {X − x1, Y − y1};

(c) If D = P1 + P2 − 2 · ∞, then

(i) LM(l(X,Y )) = X: G = {lm(X,Y ), (Y − y1)(Y − y2)};

(ii) LM(l(X,Y )) = Y : G = {lm(X,Y ), (X − x1)(X − x2)},

where lm(X,Y ) = LC(l(X,Y ))−1l(X,Y ).

(d) If D = P1 + P2 + P3 − 3 · ∞, then G = {g1(X,Y ), g2(X,Y ), g3(X,Y )} with

g1(X,Y ) = (X − x1)(X − x2) + k1l(X,Y ),

g2(X,Y ) = (X − x1)(Y − y2) + k2l(X,Y ),

g3(X,Y ) = (Y − y1)(Y − y2) + k3l(X,Y ),

for

(i) if ]{P1, P2, P3} = 2 or 3, then we can assume that P3 6= P1, P2 and we have

k1 = −l(x3, y3)
−1(x3 − x1)(x3 − x2),

k2 = −l(x3, y3)
−1(x3 − x1)(y3 − y2),

k3 = −l(x3, y3)
−1(y3 − y1)(y3 − y2);

(ii) if ]{P1, P2, P3} = 1, then

k1 = (S2
0T2 + 3yT 2

1 − S0S1T1)
−1S2

0 ,

k2 = −(S2
0T2 + 3yT 2

1 − S0S1T1)
−1S0T1,

k3 = (S2
0T2 + 3yT 2

1 − S0S1T1)
−1T 2

1 ,

for

S0 = 3y2 + s2x
2 + s1x + s0,

S1 = 2s2x + s1,

T1 = 2s2xy + s1y + 4x3 + 3t3x
2 + 2t2x + t1,

T2 = s2y + 6x2 + 3t3x + t2,

where ]{P1, P2, P3} denotes the number of elements in {P1, P2, P3}.

Proof. For the reduced Groebner basis G for I, we have δ(G) = δ(I) = n.

(a) If D = 0, then δ(G) = 0. It follows that LM(G) = {1}. Thus G = {1}.

(b) If D = P1 −∞, then δ(G) = 1. Thus LM(G) = {X,Y } and

G = {g1(X,Y ) = X + c1, g2(X,Y ) = Y + c2}

for c1, c2 ∈ K. Since (g1)
+, (g2)

+ ≥ P1, we have c1 = −x1, c2 = −y1.
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(c) If D = P1 +P2−2 ·∞, then δ(G) = 2. Thus LM(G) = {X,Y 2} or {Y,X2}. For the

linear polynomial l(X,Y ), we have l(X,Y ) ∈ I and (X−x1)(X−x2), (Y −y1)(Y −y2) ∈ I.

The reduced Groebner basis G are obtained from a Groebner basis {l(X,Y ), (X−x1)(X−

x2), (Y − y1)(Y − y2)} for I.

(d) If P1 + P2 + P3 − 3 · ∞, then δ(G) = 3. Thus the elements of G are

g1(X,Y ) = X2 +a1Y + b1X + c1,

g2(X,Y ) = XY +a2Y + b2X + c2,

g3(X,Y ) = Y 2 +a3Y + b3X + c3

for ai, bi, ci ∈ K (i = 1, 2, 3) by Proposition 3.4. For the linear polynomial l(X,Y ), every

polynomial of the form aY + bX + c in ϕ−1(L(∞·∞− (P1 + P2))) is kl(X,Y ) for k ∈ K.

(i) Since (g1)
+ ≥ P1 + P2, we have g1(X,Y ) − (X − x1)(X − x2) ∈ ϕ−1(L(∞ · ∞ −

(P1 +P2))) with a leading monomial ≤ Y . It follows that g1(X,Y ) = (X −x1)(X −x2)+

k1l(X,Y ) for k1 ∈ K. Further, g1(x3, y3) = 0. Since D is a normal divisor, l(x3, y3) 6= 0 by

Proposition 3.2. Thus k1 = −l(x3, y3)
−1(x3−x1)(x3−x2). Further, g2(X,Y ) and g3(X,Y )

are obtained from (X − x1)(Y − y2), (Y − y1)(Y − y2) ∈ ϕ−1(L(∞ ·∞− (P1 + P2))).

(ii) Since P1 = P2, we have l(X,Y ) = FY (x, y)(Y − y) + FX(x, y)(X − x).

If FY (x, y) = S0 = 0, then (l)+ = (X −x)+ ≥ 2P . It follows that g1(X,Y ) = (X −x)2

and g2(X,Y ) = (X −x)(Y − y). For a polynomial (Y − y)3 −F (X,Y ) ∈ I, the remainder

r(X,Y ) = 3y(Y − y)2 +X −x on division by {g1(X,Y ), g2(X,Y )} is also in I. Since D is

a normal divisor, we have y 6= 0 by Proposition 3.2. Thus LM(r(X,Y )) = Y 2. It follows

that g3(X,Y ) = (Y − y)2 + (3y)−1(X − x).

If FY (x, y) = S0 6= 0, then (l)+ ≥ 2P with LM(l(X,Y )) = Y . It follows that

l(X,Y )(X − x), l(X,Y )(Y − y) ∈ I with the leading monomials XY and Y 2. For a poly-

nomial F (X,Y ) − FY (x, y)−1l(X,Y )(Y − y)Y ∈ I, the remainder r(X,Y ) = S−2
0 (S2

0T2 +

3yT 2
1 −S0S1T1)(X −x)2 + l(X,Y ) on division by {l(X,Y )(X −x), l(X,Y )(Y − y)} is also

in I. Since D is a normal divisor, we have S2
0T2 + 3yT 2

1 − S0S1T1 6= 0 by Proposition

3.2. Thus LM(r(X,Y )) = X2. It implies that g1(X,Y ) = (X − x)2 + (S2
0T2 + 3yT 2

1 −

S0S1T1)
−1S2

0 l(X,Y ). Further, g2(X,Y ) and g3(X,Y ) are obtained from a Groebner basis

{g1(X,Y ), l(X,Y )(X − x), l(X,Y )(Y − y)}. 2

3.3 Inverse of a normal divisor

In this subsection, we give the inverse of normal divisors of C. Let D = E − n · ∞ ∈

Div0
K(C) be a divisor with E = D+ and let G be the reduced Groebner basis for ϕ−1(ID).

Let D′ = E ′ − n′ ·∞ be the normal divisor such that D′ ∼ −D and let G′ be the reduced

Groebner basis for ϕ−1(ID′). Then D′ = −D + (g1) for the element g1(X,Y ) with the

smallest leading monomial but Y 3 in G, where (g1) denotes the divisor (ϕ(g1(X,Y ))).
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Since E ′ = (g1)
+ − E, ϕ−1(ID′) is

{h(X,Y ) | h(X,Y )gi(X,Y ) ∈ 〈g1(X,Y ), F (X,Y )〉 for all gi(X,Y ) ∈ G}.

In particular, if D is a normal divisor, then n′ = deg (g1)
+ − n and g1(X,Y ) is also the

element with the smallest leading monomial in G′.

For example, let D = E − 3 · ∞ be a normal divisor with

G = {g1(X,Y ), g2(X,Y ), g3(X,Y )}

such that LM(g1(X,Y )) = X2. Then D′ = −D + (g1) and deg E ′ = 3. Thus

G′ = {h1(X,Y ) = g1(X,Y ), h2(X,Y ), h3(X,Y )}

with h2(X,Y ) = XY +A2Y +B2X+C2, h3(X,Y ) = Y 2+A3Y +B3X+C3 for Ai, Bi, Ci ∈

K (i = 2, 3) such that hj(X,Y )gk(X,Y ) ∈ 〈g1(X,Y ), F (X,Y )〉 for all j, k = 2, 3.

For a normal divisor D, we have the following on a normal divisor D′ such that

D′ ∼ −D:

Theorem 3.6 Let D ∈ Div0
K(C) be a normal divisor, and let G be the reduced Groebner

basis for the normal ideal ϕ−1(ID). Let D′ be the normal divisor such that D′ ∼ −D.

Then the reduced Groebner basis G′ for the normal ideal ϕ−1(ID′) is as follows:

(a) If G = {1}, then G′ = {1};

(b) If G = {g1(X,Y ) = X + c1, g2(X,Y ) = Y + c2}, then

G′ = {h1(X,Y ) = X + c1, h2(X,Y ) = Y 2 − c2Y + c2
2 + s2c

2
1 − s1c1 + s0};

(c) If G = {g1(X,Y ) = X + c1, g2(X,Y ) = Y 2 + a2Y + c2}, then

G′ = {h1(X,Y ) = X + c1, h2(X,Y ) = Y − a2};

(d) If G = {g1(X,Y ) = Y + b1X + c1, g2(X,Y ) = X2 + b2X + c2}, then

G′ = {h1(X,Y ), h2(X,Y )} for

h1(X,Y ) = Y + b1X + c1,

h2(X,Y ) = X2 + (−b3
1 − b2 + t3 − b1s2)X

+b3
1b2 + b2

2 − 3b2
1c1 − c2 + t2 − b2t3 − b1s1 + b1b2s2 − c1s2;

(e) If G = {g1(X,Y ), g2(X,Y ), g3(X,Y )} for

g1(X,Y ) = X2 +a1Y + b1X + c1,

g2(X,Y ) = XY +a2Y + b2X + c2,

g3(X,Y ) = Y 2 +a3Y + b3X + c3,
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then G′ = {h1(X,Y ), h2(X,Y ), h3(X,Y )} for

h1(X,Y ) = X2 + a1Y + b1X + c1,

h2(X,Y ) = XY + (−a2 + b1)Y + (a2
1 − a3 − a1s2)X

−a2
1a2 + a2a3 − a2

1b1 − a3b1 + a1b3 − a1s1 + a1a2s2 + a2
1t3,

h3(X,Y ) = Y 2 + (a2
1 − b2 − a1s2)Y + (2a1b1 − b3 + s1 − b1s2 − a1t3)X

−2a1a
2
2 + 2a2

1a3 + 2a1a2b1 − a1b
2
1 − 3a2

1b2 + b2
2 + a2b3 − b1b3 + s0 + a2

2s2

−a1a3s2 − a2b1s2 + 2a1b2s2 − a1t2 + a1b1t3.

3.4 Addition of normal divisors

In this subsection, we consider the addition of normal divisors in C. Let D1 =

E1 − n1 · ∞ and D2 = E2 − n2 · ∞ be normal divisors of C with E1 = D+
1 and E2 = D+

2 .

Let D′ = E ′ − n′ ·∞ be a normal divisor such that D′ ∼ −(D1 + D2) and D = E − n ·∞

be a normal divisor such that D ∼ D1 + D2. In this subsection, we use the following

notation:

I ′ : a normal ideal ϕ−1(L(∞ ·∞− E ′)),

I : a normal ideal ϕ−1(L(∞ ·∞− E)),

G1 : a reduced Groebner basis for ϕ−1(L(∞ ·∞− E1)),

G2 : a reduced Groebner basis for ϕ−1(L(∞ ·∞− E2)),

Gg : a set {fi(X,Y )gj(X,Y ), F (X,Y ) | fi(X,Y ) ∈ G1, gj(X,Y ) ∈ G2},

G : a reduced Groebner basis for I,

H : a reduced Groebner basis for ϕ−1(L(∞ ·∞− (E1 + E2))),

h1(X,Y ) : a polynomial with the smallest leading monomial in H,

v1(X,Y ) : a monic polynomial with the smallest leading monomial in I ′,

f : a function ϕ(f(X,Y )) for a polynomial f(X,Y ).

The final purpose of this subsection is to find G for the given G1 and G2.

Since Gg generates ϕ−1(L(∞ ·∞− (E1 + E2))), H is obtained by the algorithm due

to Buchberger for computing a Groebner basis using S-polynomials. H satisfies that

∆(H) ⊂ ∆(Gg) with δ(H) = n1 + n2. Since h1 ∈ L(m ·∞− (D1 + D2)) with the smallest

integer m such that l(m·∞−(D1+D2)) = 1, we have n1+n2 ≤ deg (h1)
+ = n1+n2+m ≤

n1 + n2 + 3. For the polynomial h1(X,Y ), we have D′ = −(D1 + D2) + (h1) and

I ′ = {v(X,Y ) | v(X,Y )hi(X,Y ) ∈ 〈h1(X,Y ), F (X,Y )〉 for all hi(X,Y ) ∈ H}.

If LM(H) is obtained, LM(v1(X,Y )) is determined by n′ = deg (h1)
+ − (n1 + n2) and

LM(v1(X,Y )hi(X,Y )) ∈ LM(〈h1(X,Y ), F (X,Y )〉) for all hi(X,Y ) ∈ H. Further, LM(G)

is determined with LM(v1(X,Y )) and n′ by Theorem 3.6. Thus, LM(G) is determined

by LM(H) when G1 and G2 are given. As a result, we have the following on the relation

between LM(H) and LM(G) for the given G1 and G2:
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no. LM(G1) LM(G2) LM(H) LM(G)

I {X,Y } {X,Y } (i) {X,Y 2} {X,Y 2}

(ii) {Y,X2} {Y,X2}

II {X,Y } {X,Y 2} (i) {X,Y 3} {1}

(ii) {X2, XY, Y 2} {X2, XY, Y 2}

III {X,Y } {Y,X2} (i) {Y,X3} {X,Y 2}

(ii) {X2, XY, Y 2} {X2, XY, Y 2}

IV {X,Y } {X2, XY, Y 2} (i) {X2, XY, Y 3} {X,Y }

(ii) {X2, Y 2} {Y,X2}

(iii) {XY, Y 2, X3} {X2, XY, Y 2}

V {X,Y 2} {X,Y 2} (i) {X2, XY, Y 3} {X,Y }

(ii) {X2, Y 2} {Y,X2}

VI {X,Y 2} {Y,X2} (i) {X2, XY, Y 3} {X,Y }

(ii) {XY, Y 2, X3} {X2, XY, Y 2}

VII {Y,X2} {Y,X2} (i) {Y,X4} {1}

(ii) {X2, Y 2} {Y,X2}

(iii) {XY, Y 2, X3} {X2, XY, Y 2}

VIII {X,Y 2} {X2, XY, Y 2} (i) {X2, XY 2, Y 3} {X,Y 2}

(ii) {XY,X3, Y 3} {Y,X2}

(iii) {Y 2, X3, X2Y } {X2, XY, Y 2}

IX {Y,X2} {X2, XY, Y 2} (i) {X2, XY 2, Y 3} {X,Y 2}

(ii) {XY, Y 2, X4} {X,Y }

(iii) {XY,X3, Y 3} {Y,X2}

(iv) {Y 2, X3, X2Y } {X2, XY, Y 2}

X {X2, XY, Y 2} {X2, XY, Y 2} (i) {X2, Y 3} {1}

(ii) {XY,X4, Y 3} {X,Y 2}

(iii) {Y 2, X3} {X,Y }

(iv) {Y 2, X2Y,X4} {Y,X2}

(v) {X3, X2Y,XY 2, Y 3} {X2, XY, Y 2}

Since v1(X,Y )hi(X,Y ) ∈ 〈h1(X,Y ), F (X,Y )〉, we can write

v1(X,Y )hi(X,Y ) = q1,i(X,Y )h1(X,Y ) + q2,i(X,Y )F (X,Y )

with q1,i(X,Y ), q2,i(X,Y ) ∈ K[X,Y ]. It follows that (v1) + (hi) = (q1,i) + (h1). Thus

(q1,i)
+ = (v1)

+ + (hi)
+ − (h1)

+. Since (hi)
+ ≥ E1 + E2, we have q1,i ∈ L(∞ · ∞ −

E). Thus q1,i(X,Y ) ∈ I. Conversely, if f(X,Y ) ∈ I, then (f)+ ≥ E. For H =
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{h1(X,Y ), . . . , ht(X,Y )}, it follows that

(f)+ ≥ E1 + E2 − (h1)
+ + (v1)

+

= min{(q1,i)
+ | i = 1, · · · , t}.

It implies that the function ϕ(f(X,Y )) ∈ 〈q1,1, · · · , q1,t〉. Thus

f(X,Y ) ∈ 〈q1,1(X,Y ), · · · , q1,t(X,Y ), F (X,Y )〉.

As a result,

I = 〈q1,1(X,Y ), · · · , q1,t(X,Y ), F (X,Y )〉.
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