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Abstract

A (w, r) cover-free family is a family of subsets of a finite set such that no

intersection of w members of the family is covered by a union of r others. A (w, r)

superimposed code is the incidence matrix of such a family. Such a family also arises

in cryptography as the concept of a key distribution pattern. In the present paper,

we survey some recent results on superimposed codes. We first briefly review basic

properties of superimposed codes. Next we survey some results on the construction

of superimposed codes, the optimal superimposed codes, and the uniqueness of some

optimal superimposed codes.

1 Definition and basic properties

We start with the definition of (w, r) superimposed codes.

Definition 1. An N × T (0, 1)-matrix C is called a (w, r) superimposed code of size

N × T , if for any pair of subsets I, J ⊂ [T ] = {1, 2, · · · , T} such that |I| = w, |J | = r

and I ∩ J = ∅ there exists a coordinate x ∈ [N ] = {1, 2, · · · , N} such that cxp = 1 for all

p ∈ I and cxq = 0 for all q ∈ J .
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Let C be a (w, r) superimposed code of size N × T . The elements of [T ] (resp. [N ])

are referred to as points (resp. blocks) of C. We conventionally use letters p1, p2, . . .

(resp. x, y, . . .) to denote points (resp. blocks). The number T of points of C is called

the cardinality of C and the number N of blocks is called the length of C. Sometimes we

need to view C as a code. In this circumstance, we take the columns of C as codewords

and regard C as a code of length N with cardinality T .

Let Sp denote the characteristic set of p-th column and Lx denote the characteristic

set of x-th row of C. We say that p is incident with x (resp. x is incident with p) if

p ∈ Lx (resp. x ∈ Sp). It follows from the definition of a (w, r) superimposed code

that the family A = {S1, . . . , ST} of subsets of [N ] = {1, 2, . . . , N} becomes a family in

which no intersection of w members is covered by the union of r others. It is called a

(w, r) cover-free family. Such a family also arises in cryptography as the concept of a key

distribution pattern. Superimposed codes have wide applications in combinatorial science

such as group testing, perfect hash families, key storage in secure network, and tracing

traitors.

There are simple examples of (w, r) superimposed codes. If we take a matrix whose

rows are all possible binary vectors of weight w, then this matrix becomes a (w, r) super-

imposed code for any r. We call this matrix the trivial (w, r) superimposed code of size

N × T , where N =
(

T
w

)
. Obviously we are interested in superimposed codes which have

better performance than trivial superimposed codes. The main problem in the study of

superimposed codes is to find the minimal length N(T ; w, r) of a (w, r) superimposed code

for a given cardinality T , or the maximal cardinality T (N ; w, r) of a (w, r) superimposed

code for a given length N . It is clear that N(T ; w, r) = N(T ; r, w); thus we may only

consider the case w ≤ r. Let C be a (w, r) superimposed code of size N × T . By deleting

one column of C, we obtain a (w, r) superimposed code of size N × (T − 1). Therefore

we have N(T − 1; w, r) ≤ N(T ; w, r).

For fixed T and (w, r), a (w, r) superimposed code of size N × T is called an optimal

superimposed code if N = N(T ; w, r). There are many cases in which the trivial super-
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imposed code becomes an optimal superimposed code. For example, it is known [4] that

N(T ; w, r) =
(

T
w

)
when T ≤ w + r + r

w
. We remark that there is a case which is not

covered by Engel’s result and the trivial superimposed code is still an optimal superim-

posed code. For example, it will be prove that N(7; 2, 3) = 21. Moreover we can prove

that N(T ; w, r) =
(

T
w

)
whenever T ≤ (w+1)r

w−1
−

√
36r
w−1

(see [8]). When the trivial superim-

posed code is not optimal, the computation of the value N(T ; w, r) has become a serious

research problem. We refer to the appendix of [7] for the known values of N(T ; w, r).

The idea of using some recurrent methods to obtain an upper bound of asymptotic

rate was considered in earlier works. We will formulate two recurrent methods in Lemmas

1 and 2. We will combine these methods with classical bounds in coding theory to prove

the nonexistence of superimposed code of certain size.

Definition 2. Denote by

J1 = min
1≤i≤T

|Spi
|

the minimal column weight of a superimposed code C.

Definition 3. Denote by

J0 = N − max
1≤i≤T

|Spi
|

the minimal number of 0’s in the columns of a superimposed code C.

Lemma 1 [L.Bassalygo]. If there is a (w, r) superimposed code of size N × T , then

there are (w − 1, r) superimposed code of size J1 × (T − 1) and (w, r − 1) superimposed

code of size J0 × (T − 1).

Lemma 2 [G.Kabatianski]. If there is a (w, r) superimposed code, say C, of size

N × T then there is a (w − 1, r − 1) superimposed code of size [d/2] × (T − 2), where d

denotes the minimum distance of the code C.

Proof. Consider the code C. We may assume that the first two columns c1, c2 are a

pair of codewords for which d(c1, c2) = d. By symmetry we may assume that

|{i : c1
i = 1; c2

i = 0}| ≤ |{i : c1
i = 0; c2

i = 1}|.
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Let

UC = {i : c1
i = 1; c2

i = 0}.

Then, |UC | ≤ d/2.

Consider the submatrix C1 of C consists of i-th row of C, where i runs through UC .

We claim that the code C1 r {c1; c2}, obtained from C1 by deleting first two columns, is

a (w − 1, r − 1) superimposed code of size |UC | × (T − 2). Take arbitrary subsets X, Y

of {3, 4, . . . , T} with |X| = w − 1, |Y | = r − 1, and X ∩ Y = Ø. Put X̃ = X ∪ {1} and

Ỹ = Y ∪ {2}. From the superimposedness of C we have a coordinate i such that cij = 1

for j ∈ X̃ and cij = 0 for j ∈ Ỹ . Since ci1 = 1 and ci2 = 0, we should have i ∈ UC . Note

that, for this i, we have cij = 1 for j ∈ X and cij = 0 for j ∈ Y . This proves the lemma.

2 Construction via combinatorial designs

In this section we consider constructions of superimposed codes of small size. We first

construct superimposed codes using t-designs. Next we introduce the notion of super-

simple designs. Using super-simple designs, we finally construct some new superimposed

codes of small size.

Proposition 1. [13] A (t + 1)− (v, k, 1) design is a (w, r) superimposed code of size

N × v, where

w = t, N =

(
v

t+1

)
(

k
t+1

) =
(v − t)

(
v
t

)

(k − t)
(

k
t

) and r <
v − t

k − t
.

It is known that a 3 − (Q2 + 1, Q + 1, 1) design exists when Q is a prime power.

Applying Proposition 1, we obtain

Proposition 2. Suppose Q is a prime power. Then there exists a (2, Q) superimposed

code of size Q(Q2 + 1)× (Q2 + 1).
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Corollary 1. There is a (2, 3) superimposed code of size 30× 10.

A super-simple t-design was introduced in [12] (the terminology ‘super-simple design’

is due to Gronau and Mullin [6]). A super-simple t-design is defined to be a t− (v, k, λ)

design with λ > 1 in which the intersection of any two blocks has at most t elements.

We are interested in super-simple designs because of the following theorem which is a

generalization of some constructions used in [11] and [13].

Theorem 1. A super-simple t − (v, k, λ) design is a (t, λ − 1) superimposed code of

size N × v, where N =
λ(v

t)
(k

t)
.

Proof. Consider any t points p1, p2, . . . , pt. There are exactly λ blocks that contain

these points ,i.e., |Sp1

⋂
Sp2

⋂
. . .

⋂
Spt | = λ. Consider any other r points h1, h2, . . . , hr,

where r = λ− 1. Since no two (or more) blocks of a super-simple t design can have more

than t common points, for any l with 1 6 l 6 r, we have

|Sp1

⋂
Sp2

⋂
. . .

⋂
Spt

⋂
Shl
| ≤ 1.

So

|Sp1

⋂
Sp2

⋂
. . .

⋂
Spt

⋂
{

⋃

l=1,...,r

Shl
}| ≤ r < λ.

If it were

Sp1

⋂
Sp2

⋂
. . .

⋂
Spt ⊆

⋃

l=1,...,r

Shl
,

|Sp1

⋂
Sp2

⋂
. . .

⋂
Spt

⋂
{

⋃

l=1,...,r

Shl
}| = |Sp1

⋂
Sp2

⋂
. . .

⋂
Spt | = λ.

So we have

Sp1

⋂
Sp2

⋂
. . .

⋂
Spt *

⋃

l=1,...,r

Shl
.

This proves the theorem.

It is easy to see that every (t + 1) − (v, k, 1) design is a super-simple t − (v, k, (v −
t)/(k − t)) design. We note that, in this case, Theorem 1 is equivalent to Proposition 1.

So we are interested in super-simple designs which do not arise from Steiner systems. In
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[1] and [2] Chen proved that there exists a super-simple 2− (v, 4, 3) design if and only if

v ≡ 0 or 1 (mod 4), v ≥ 8, and there exists a super-simple 2− (v, 4, 4) design if and only

if v ≡ 1 (mod 3), v ≥ 10. So we have

Corollary 2. There is a (2, 2) superimposed code of size 14× 8.

Corollary 3. There is a (2, 2) superimposed code of size 18× 9.

3 Optimality of certain superimposed codes

In this section we combine the idea of recurrence methods and the methods in coding

theory to prove that some superimposed codes constructed in the previous section are

optimal. We only give proofs for Theorems 2 and 3, and refer to [7] for proofs of remaining

parts.

Proposition 3. The optimal (2, 2) superimposed code with cardinality 8 has length

14.

Theorem 2. The optimal (2, 2) superimposed code with cardinality 9 has length 18.

Proof. Let us first prove that N(9; 2, 2) ≥ 18. Suppose that there is a (2, 2) su-

perimposed code of size 17 × 9. From the Plotkin bound we have d(17, 9) ≤ 9, where

d(N, T ) = max|C|=T d(C) denotes the maximal possible code distance for codes of length

N with cardinality T . Then, by Lemma 2, there is a (1, 1) superimposed code of size

4 × 7. Since T (4; 1, 1) = 6, we have 18 ≤ N(9; 2, 2). On the other hand, by Corollary 3,

there is a (2, 2) superimposed code of size 18× 9. This proves that N(9; 2, 2) = 18.

Theorem 3. The optimal (2, 3) superimposed code with cardinality 7 has length 21.

Proof. Let us first prove that N(7; 2, 3) ≥ 21. Assume that there is a (2, 3) super-

imposed code, say C, of size 20 × 7. We claim that the weight of any codeword is 6,i.e.,

|Spi
| = 6 for all i = 1, 2, . . . , T . If there is a codeword of weight 7 or more, then by

Lemma 1, we may have a (2, 2) superimposed code of size 13 × 6. However, Table 3 in

the appendix of [7] shows that N(6; 2, 2) = 14. On the other hand, if there is a codeword
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of weight 5 or less, we may have a (1, 3) superimposed code of size 5× 6. However, Table

2 in the appendix of [7] gives us N(6; 1, 3) = 6. So there is neither a codeword of weight

7 or more nor a codeword of weight 5 or less in the code C. This proves our claim.

By our claim the code C is a constant weight code. Due to the Johnson bound (see

[10] pp. 525), every constant weight code of weight g and cardinality T satisfies

T ≤ [(n · d/2)/(g2 − gn + nd/2)]

provided that the denominator is positive. So we have d ≤ 9. Therefore, by Lemma 2,

there is a (1, 2) superimposed code of size 4× 5. However, Table 1 in the appendix of [7]

gives us that N(5; 1, 2) = 5. So we have N(7; 2, 3) ≥ 21. On the other hand, there is a

trivial (2, 3) superimposed code of size 21× 7. This proves that N(7; 2, 3) = 21.

Theorem 4. The optimal (2, 3) superimposed code with cardinality 10 has length 30.

Theorem 5. The optimal (3, 3) superimposed code with cardinality 11 has length 66.

4 Uniqueness of some optimal superimposed codes

In this section we prove that some optimal superimposed codes constructed in [5], [7],

and [11] are unique. For this purpose we need information on the values of N(T ; 1, 1),

N(T ; 1, 2), N(T ; 1, 3), and N(T ; 2, 2) for small values of T . It is well known (the Sperner

theorem) that N(T ; 1, 1) is the smallest N such that
(

N
bN

2
c
)

is greater than or equal to T .

For the remaining values, we refer to the appendix of [7].

It is easy to see that if we permute rows or columns of a superimposed code then new

matrix is also a superimposed code. This motivates the following definition.

Definition 4. Two superimposed codes C and C ′ are equivalent if one can be trans-

formed into the other by a finite number of row or column permutations.

We have the following three uniqueness theorem for optimal superimposed codes. We

only give a proof for Theorem 7 and refer to [9] for proofs of remaining theorems.
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Theorem 6. A binary matrix C is a (1, 2) superimposed code of size 9 × 12 if and

only if it is the transpose of the incidence matrix of a 2− (9, 3, 1) design.

The following lemma will be useful in proving Theorem 7 and 8.

Lemma 3. Let C be a (w, r) superimposed code. Suppose that, for some w points

p1, p2, . . . , pw of C, we have |Lx| > w for all x ∈ Sp1

⋂
Sp2

⋂
. . .

⋂
Spw . Then we have

∣∣∣Sp1

⋂
Sp2

⋂
. . .

⋂
Spw

∣∣∣ ≥ r + 1.

Proof. Suppose that there are only r blocks in the set Sp1

⋂
Sp2

⋂
. . .

⋂
Spw . For each

block xj ∈ Sp1

⋂
Sp2

⋂
. . .

⋂
Spw there exists at least one point qj incident with xj and

distinct from p1, p2, . . . , pw. Consider the set J consists of such qj’s. Then,

Sp1

⋂
Sp2

⋂
. . .

⋂
Spw ⊂

⋃
qj∈J

Sqj
.

From the superimposedness of C it follows that J ∩ {p1, p2, . . . , pw} 6= Ø for the set J

with |J | ≤ r. However it is clear from our construction that

J ∩ {p1, p2, . . . , pw} = Ø.

This proves the lemma.

Theorem 7. A binary matrix C is a (2, 2) superimposed code of size 14 × 8 if and

only if it is the incidence matrix of a 3− (8, 4, 1) design.

Proof. Let C be the incidence matrix of a 3 − (8, 4, 1) design. It is easy to see that

every 3 − (8, 4, 1) design is a 2 − (8, 4, 3) super-simple design, and vice versa. It follows

from Theorem 1 that C is a (2, 2) superimposed code of size 14× 8.

Conversely, let C be a (2, 2) superimposed code of size 14×8. If |Lx|= 2 or 3 for some

x ∈ {1, 2, · · · 14} then there exists a (2, 2) superimposed code of size 14 × 6 with |Lx|=0

or 1. So there exists a (2, 2) superimposed code of size 13× 6. However it is well known

that N(6; 2, 2) = 14 (see [7]). Similarly we can prove that there is no x ∈ {1, 2, · · · , 14}
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such that |Lx| = 5 or 6. So we should have that |Lx| = 4 for all x ∈ {1, 2, . . . 14}. It

follows from Lemma 1 that |Sp1

⋂
Sp2| ≥ 3 for any two distinct p1, p2 in {1, 2, · · · , 8}. By

counting the number of (1, 1)’s in C, we have that |Sp1

⋂
Sp2| = 3 for any two distinct

p1, p2. This proves that C is a 2 − (8, 4, 3) design. Now suppose that there are three

distinct points p1, p2, and p3 such that |Sp1

⋂
Sp2

⋂
Sp3| ≥ 2. It follows from the definition

of superimposed code that there is at least one row x which is incident with p1, p2, but

not with p3. Let p4 be a point distinct from p1, p2, p3 which is incidence with x (since

|Lx| = 4, we can always choose such a p4). By our construction, we cannot find a row y

such that cyp1 = cyp2 = 1 and cyp3 = cyp4 = 0, a contradiction. This proves that C is a

2− (8, 4, 3) super-simple design, hence it is a 3− (8, 4, 1) design. ¤

Theorem 8. A binary matrix C is a (2, 3) superimposed code of size 30 × 10 if and

only if it is the incidence matrix of a 3− (10, 4, 1) design.

Remark. It is known [3] that 2-(9,3,1), 3-(8,4,1), and 3-(10,4,1) designs are unique.

Hence the superimposed codes mentioned in Theorems 6,7, and 8 are unique.
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