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Abstract
A reverse algorithm of continued fractions toward real numbers
via power series was presented at the meeting of JANT in May 2003
This algorithm works well if every partial quotient of the continued
fraction is larger than 1 However, it does not always reflect the facts
if there are many 1’s in the partial quotients This article shows some
methods how to compensate such a defect

1 Introduction

For any real number «, its continued fraction a = [ag; a1, az,as, | can be
uniquely expressed by the algorithm:

a=ay+ (1/ay), ap = |af,
an=a, + (1/apy1), an=|on] (n=1,2, )
Namely,

[Clo; ap, az, ds, ] =dap +
ar +

“t o



However, on the contrary, for any given sequence of partial quotients
ag, ay, ag, as, , 1s there any general algorithm to find the real number yield
ing the continued fraction expansion [ag;ay,as,as3, |7 If the partial quo
tients is finite, it is not difficult to find its corresponding rational number If
it is infinite and periodic, it is still possible to find its corresponding quadratic
irrational number But in the other cases it is too hard to find an explicit
or recognizable form of its corresponding real number from the continued
fraction

The following reverse algorithm of continued fractions toward real num
bers via power series was presented at the 10th meeting of JANT in May
2003

Theorem A Let Q(k) be a function in k& which takes positive integral values
for k=1,2, Then

- EOO_OC/ 1 = 1
0; Q(k)2, = ==+ = D" “snq,
[ ( )]k 1 > en Q(l) n:1( ) 1
where for n = 0,1, 2,
1
d = m(cn Cn 15111+ Cn 2521 +( D™ Yers, 11+ ( 1)co8n1)
and for £k > 1
= (s bt A k) (122)
Snk_Q(k)Q(k—l—l) Sp 11 T Sp 12 Sn 1 k41 n =
with
1
S1p = ————— and sy =1
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One of the immediate applicable forms is as follows

Corollary B Let Q(k) be a function in k which takes positive integral values
for k=1,2, Then

1 1 0 n 1
. 0o Q1) <1 + Q(2)Q(3) n:l( 1) d, 1>
1 1 0 n )
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where for £k > 1

1
dy i = dy 11+d, 12+ +d, >3
k Q(k-I-Q)Q(k—I-?))( 11 12 1k+1) (n )

with
1

I

This algorithm is valid for any pattern of continued fraction expansion as

long as the sum above converges For example, if a; > 2 for all £ > 1, then
the series in Theorem A and Corollary B converges

Example 1 Let a be a positive integer, u be rational so that ua is a positive
integer Then

[0; uak];2, = Yerou ¥ ta U (@* 1) !
’ =1 —

=1

Ejiou 25q 52 HS (a2i 1) 1

=1

Example 2

0;12,22,3%, 4% ] =[0;k2)52,

1 ( 1 17 149 257063 )

_ 1+ 36 1 12 T 250200 233280000  11150592000000

- 1, 1 ( 1 17 149 257063 )
1+ 1136 1 141 T 250200 233280000 T 1150592000000

[0;12,22,3%,4%, ]

_1 l_|_i 401 201017 100767923 n 2475186587813
© 4072 20736 37324800 67184640000  5925685248000000

Example 3

[O;q(g)7q(;)7q@)7q(g)7q(g)7 ] = [0’(](’“—21)]00

k=1
_lte !t ¢ +q e e ) ¢ et Ota tg e e )
24qg ' q °+q g "+q 9 q % % *+q )+tq Yg Hq +q 9+
where (g) are binomial coefficients with (g) = (;) =0




Example 4

[0;F07F17F27F37 ]:[0;171727375787137 ]

1_|_ 1 <1 1 + T 101 + 19009 25053317 + 561357912257
_ 2 6 180 10800 8424000 45995040000 4269259612800000

)

- 1 < 1 7 101 19009 25053317 561357912257
2 + 2 1 6 + 180 10800 + 8424000 45995040000 + 4269259612800000

where {F,} are Fibonacci numbers defined by Fy = Fy = 1 and F,, =
Fn I—I'Fn 2(”22)

2 Does this algorithm really retrieve the orig-
inal real number?

For instance, we shall consider a simple case Let Q(k)=a (k=1,2, )in
Corollary B, where a is an integer with ¢ > 1 Then

In general, we have

(k+1)2n+k 4)!

dy,r =
T n Dln+k 1)l 2
Hence,
2(2n  3)!
dnlz
(n 2)Inla?r 2
Since

e



we have

0iaya, ]=-

as expected

However, if @ = 1, then the power series > _,( 1)" 'd,; does not con
verge See Example 8 below

Consider the case where o = [0;1,1,1,2,1,3,1,4,1,5, ] If we apply
Corollary B above, then we calculate dy; = 1/2, d3, = 1/2, dy; = 7/12,
ds1 = 13/18, dg1 = 397/432, d-1 = 3073/2592, dgy = 119807/77760, dg, =
4689709/2332800, dio; = 183987383/69984000, But, this yields the
unexpected simple continued fraction [0;5,15,1,2,1,27, | instead of the
desired one [0;1,1,1,2,1,3,1,4,1,5, ]

Hence, if 1 appears so often in the partial quotients, Theorem A with
Corollary B cannot be applied directly as it is

3 Main result

We shall describe a more general algorithm which can be applied to the case
where 1 appears very often and regularly in the sequence of partial quotients
By using Theorem 1 below we properly have the desired simple continued
fraction

Lete,=1or 1(k=2,3, ),and S(k)=eqi/(ararsr) (k=1,2, )



Theorem 1

[ee)

1 Eoo—ocl 1 1
— ZO_ n —_ — ( 1)n 3n17
as +
as +
where for n = 0,1, 2,
/ 1 n 1 n
c, = a—(Cn Cp 1511+ € 2521 +( D" "e18n 11+ ( 1) co8n1)
1
and for £k > 1

Spk = (80 11+8, 12+ + 8, 1821)5(k) (n>2)
with sy, = S(k) and sgp =1
One of the immediate applicable forms is as follows

Corollary 1

| 1+5(2)522 (1) Y,y Loy n
€2 - = no1 = 2.0 " s
aq _I_ —63 aq <1 —I_ S(l) —I_ 5(2) En:l( 1) dn 1) a1 n=1
GQ‘I‘
Cl3‘|‘

where for £k > 1
dnk:(dn 11‘|’dn 12+ ‘|‘dn 1k+1)5(l€—|—2) (n23)

Wltthk:S(k‘—l—Q) and dllzl

Furthermore,
1 e -
€ = Z( 1)* dy
as + —465 433
ays + P
If ey =€3=¢4 = = 1, then this is just Theorem A with Corollary B



4 Application I (Negative continued fractions)

Ifeg = €3 = €4 = = 1, then this is called the negative continued
fraction expansion The negative continued fraction expansion of a real «
with 0 < o < 1 is denoted by

a= [0;a1,a3,as, |= 1
a
a2
as
where the integers a; > 2 are generated by ceiling functions rather than floor
functions in the continued fraction algorithm:

00 = {a}v

1/60, 4 =[1/0, 1] (n21)

Il
Q
3
>
3
Q
3

with corresponding convergents p,/q, = [0;a1, ,a,] given by

Pn=0upn 1 Pn2 (n>1), po=0, pi1= 1,
gn = Qpfn 1 dn 2 (7121)7 q0:17 QIZO

A simple continued fraction expansion can be transformed into a negative
continued fraction expansion by the following rule;

[0;a17a27a37 ] = [O;Cll 1,1,@2 2,1,@3 2,1,@4 2717 ]

In this continued fractions 1 appears every second time in the sequence
of partial quotients
When [0;ay,ay,a3, ] corresponds to the tanh type continued fraction,
[0;ay,az,a3, | corresponds to the tan type continued fraction In this
special case, Theorem 1 can be reduced as follows

Theorem 2 If a; > 1 and a3 > 2 (k > 2), then

S <l &
[O;Cllva?v ]:[Oaal 1717ak 2]2022:&;0_ Z‘Snlv

Sy @
n=0"" L =0



where for n = 0,1, 2,

/
Cp = a—(Cn—l-Cn 1511+ € 2521+ s, 11+ oSa1)
1

and for £k > 1
T
Spk = Spo1d n 2 2
AR Q41 ; ! ( )
with
1
Sk = and spp =1

ARl
Corollary 2 If a; > 1 and a;, > 2 (k > 2), then

[O;Cllva?v ] = [O;Cll 1717ak 2]2022

L1 A0+, dn)

1

1 [e] ’
ajaz a2a3(1 —I_ Zn:? dn 1)

where for £k > 1

k1
d, = d, 1; (n>3
FT Apt20k43 Z ! )
with |
dy = ———
Afy20k43
Furthermore,
[0;a3,a4, ] =[0;a5 1,T,a;p 2 de

Example 5 Set a, = k + 1 in Theorem 2 From dy; = 1/20, d3, =
1/240, dyy = 13/33600, ds, = 1/26880, dg; = 263 /72576000, ds, =
103/290304000, ds ; = 15563/447068160000, dg, = 55019/16094453760000,
dyo1 = 127753/380414361600000, , we have

[0;1,1,1,2,1,3,1,4,1,5 ]=[0;1,_k]z<;1

1 1 1 263 103
_ 2 <1 6 (1 —I_ —I_ 240 —I_ 33600 + 26830 + 72576000 + 290304000 + )> 1
1 L(1+ PR B g )

12 20 240 33600 26880 72576000 290304000

11 1 1 263 103
_ 1 3 12(1 —I_ 20 —I_ 240 + 33600 + 26880 + 72576000 + 290304000 + )
- 1 1 1 263 103

1 12(1 —I_ 20 + 240 + 33600 + 26880 + 72576000 + 290304000 + )




Example 6 Set ay = (2k  1)a in Theorem 2, where @ is an integer with

a>1 When
(1
% = Rl (k=0,1,2, .n),
we can get
Ly
" (2n 4 1D)la?tt
Thus,
052k DaliZ, =[0;a 1,12k +1)a 22,
e ZZOZOW _ sin + B 1
Yol yoee LU _Cosl_tang
n=0 n=0 (2n)!a?" a

5 Application II

Ife, =¢4 = = 1l and ¢ = ¢ = = 1, the general continued fraction
is transformed to the following simple continued fraction;

11 1 1 1

! _/ ! ! !
ay  ay+az  ay+ as

_[0 / / / / / / / ]

- 7a17 a27 a37a47a57 a67 a?v

. R / / / / / /

- [Oaal 17 1,@2 17a37 a47 a57a67a77 ]

_ R / / / / / / _
_[Oaal 1,1,@2 17a3 1717a4 1,1,@5, a67 Cl7, ]_

O;CI/II 171761//2 1761/{0) 171761/21 171761/;) 1717a/6 17 ]
In this case, Theorem 1 with Corollary 1 can be reduced as follows

Theorem 3 If a; > 1 (k> 1), then

Yo e l — 1
0: 1.1 1], = &=»=0 " _ " i,
[ a2k 1 s Ly Ao ]k_l ZZOZO c, ay nz:;( ) Sn 1
where for n = 0,1, 2,
/ ! n 1 n
¢, = a—(Cn Cn 1511 T Cp 2521 +( D" as, 11+ ( 1)"osn1)
1



and for £k > 1

k k41
Snk = E Sn 14 n > 2)
QR4 i—1
with
1)
S1p = and sgp =1
ARQr41

Corollary 3 If a5 > 1 (k> 1), then

L+ T D )
1 a11a2 —I_ azlas 22021( 1)n 1dn1 7

[0;G2k1 1717G2k 1];021:

where for £k > 1

k k+1

dn dn 7 n 2 3
Gk+2ak+3 Z ! )
with .
1
d2 k= @ and dl 1 = 1
Ay 20f43
Furthermore,

o0 1 = n
[0§a2k1 1,1, ag 1]k:2:a_32_:( 1) 1dn1

Example 7 Put ay, 1 = (26 1)s (s > 2) and azy, = 2 (k= 1,2, ) in
Corollary 3 Then by
1 1 1 1
dy1 = s d31:—9032 dy1 = —=— ds1 =

we have

e* 1=10;(2k 1)
% <1 + é(l + é + 90152 1081053 4531654 + >>

1 2_15 + 6_15<1 + 61_5 + 90152 1081053 4531654 + )

This can also be applied toe 1 =[1;1,2,1,1,4,1,1,6,1, ], simply

setting s = 1

10



Example 8 Put a, =2 (k= 1,2,
1/4, dyy = 1/64, dg1 =

diz1 = 21/2097152, dyg1 =

and dz = ds = d7, =

1/512, dsy = 5/16384, dio1 =

) in Corollary 3 Then we note dy =
7/131072,
33/16777216, dig1 = 429/1073741824,

= 0, and so we have

0;1,1,1, ]= s U+50+1 St+sh wmt oo wemt )
VT 1 l_|_l<1_|_l Loy L S E I — 2L )
4Ty 4 84 T 512 16384 | 131072 2097152
The right hand side should be equal to (v/3 1)/2 Indeed, by induction
we have for n = 1,2, and £ =1,2,
J o D)"k(E 420 3)! J (D" R(E 420 3)!
AT Dl(k4n DM U T (k40 142 U
( Dk+1(k+2n 2)!
dong12r 1 =10, dont1 2k = (n 1)k 1 n)iae
Since
4 3z DG (e 1) 4N
Ira=1t) i -
n=1
2 4= ( D"2n 1)
=1+—=+—= ;
2 g2 ; (n Dl(n+1)la?
we have
NERE —( D"(2n 2)!
Z( D" Mdna =1 (n 1)nl42n 1
n=1 n=1
I 1< (D)*@2n 1)
=14+-+4+= =v5 1
It i =V b
n=1
yielding
FA+IY L (D" ) 4G 1)
LS4 a (D)t 1 L4151
5 1
SV,

11



6 Application III

Put
I, ifk=2 (mod 4);
€ =
g 1, otherwise
Then
1 1 1 1 1 1 1 1 1 1 1 1
I A A A T A T T T
ay  aytastaytas agtartagtay ay+ay; +ap, +
= [0;@’17 a/27 aé? ai}? air)7a/67 a/77a/87a/97 a/107 alll? a/127 a/137a/147 ]

= [0;a/1 171761//2 1761//3761/217@; 1717a/6 17a/77a/87a/9 171761//10 17 ]
In this case, Theorem 1 with Corollary 1 can be reduced as follows

Theorem 4 If ay, 3 > 1 and agp 2 > 1 (k> 1), then

[ele) C/ 1 0
. oo Zn:O no__ E : n 1
[07a4k 3 1717a4k 2 17a4k 17a4k]k:1 — ) - a ( 1) Sn17
1

En:O Cn n=0

where for n = 0,1, 2,

/ n 1 n
¢, = a—(Cn Cp 15111+ € 2521 +( D" "8, 11+ 1) co8,1)
1
and for £ > 1
k41
€k+1
Spk = E Spo1d (n > 2)
akak-l—l =1
with
€k+1
S1p = and  sgr =
Apar41

Corollary 4 If ayr 5 > 1 and ag 2 > 1 (k> 1), then

al_l <1 + a21a3 220:1( 1)71 ldn 1>
[0§a4k 3 Lilasg o 1,ag 17a4k]2021 = 1 1

E —I— a21a3 ZZOZI( 1)n 1dn1 7

where for &k > 1

c k+1
dnk— L Zdn 17 n23)

Apt2Qk43
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with
€k+1

dy = and dy; =1

Ap420k43

Furthermore,

1 o0

0; a1, Qap, Gappr 1,1, aapye 132, = - E ( D) 'd,,
3

n=1

Example 9 Put QA4f 3 = A4 1 — 3k, a4 2 = 2 and a4 = 12k + 6 (k‘ =

1,2, ) in Corollary 4 Then this continued fraction equals
s0+50 Stmm )
Log+ell si+ma )
= 038905609 =¢* 7

[0;3k  1,1,1,3k, 12k + 622, =

References

1]

P Bundschuh, Uber eine Klasse reeller transzendenter Zahlen mit
explizit angebbarer g adischer und Kettenbruch Entwicklung, J Reine
Angew Math 318 (1980), 110 119

C S Davis, On some simple continued fractions connected with e, J

London Math Soc 20 (1945), 194 198

J L Davison, A series and its associated continued fraction, Proc Amer

Math Soc 63 (1977), 29 32

J Elianu, Sur le nombre [a, a4 3, a+23, ,a+nfB, |, Rev Roumaine
Math Pures Appl 20 (1975), 1061 1071

A Hurwitz, Uber eine besondere Art der Kettenbruch Entwicklung
reeller Grossen, Acta Math 12 (1889), 367 405

A Hurwitz, Uber die Kettenbruch Entwicklung der Zahl e, Schriften der
physikalisch okonomischen Gesellschaft zu Konigsberg in Pr , Jahrgang

32 (1891) 59 62 (in Mathematische Werke von Adolf Hurwitz, Band
I1, Birkhauser, Basel, 1933)

13



7]

[12]

[13]

[14]

[15]

A Hurwitz, Uber die Kettenbruche, deren Teilnenner arithmetische
Reihen bilden, Vierteljahrsschrift der Naturforschenden Gesellschaft in
Zurich, Jahrg 41 (1896) 34 64 (in Mathematische Werke von Adolf
Hurwitz, Band 11, Birkhauser, Basel, 1933)

M Jani and R G Rieper, Continued fractions and Catalan problems,
Electronic J Combin 7 (2000), #R45

W B Jones and W J Thron, Continued Fractions: Analytic theory
and applications, (Encyclopedia of mathematics and its applications;

vol 11), Addison Wesley, Reading, 1980

T Komatsu, On Tasoev’s continued fractions, Math Proc Cambridge

Philos Soc 134 (2003), 1 12

T Komatsu, On Hurwitzian and Tasoev’s continued fractions, Acta

Arith 107 (2003), 161 171

T Komatsu, Simple continued fraction expansions of some values of
certain hypergeometric functions, Tsukuba J Math 27 (2003), 161 173

T Komatsu, On Tasoev’s continued fractions and Rogers Ramanujan
continued fractions, preprint

D H Lehmer, Continued fractions containing arithmetic progressions,

Scripta Math 29 (1973), 17 24
L. A Lyusternik and A R Yanpol’skii (eds), Mathematical Analysis

Functions, Limits, Series, Continued Fractions (Russian); English
transl by D E Brown, Pergamon Press, Oxford, 1st ed 1965

K R Matthews and R F C Walters, Some properties of the contin
ued fraction expansion of (m/n)e'/?, Proc Cambridge Philos Soc 67
(1970), 67 74

C D Olds, Continued Fractions, Random House, New York,1963

O Perron, Die Lehre von den Kettenbruchen, Chelsea reprint of the
1929 edition (§29 §32, 126 138), 1950

C G Pinner, More on inhomogeneous Diophantine approzimation, J

Theorie des Nombres de Bordeaux 13 (2001), 539 557

14



[20]

[21]

[22]

23]

[24]

[27]

28]

[29]

A J van der Poorten, Continued fraction expansions of values of the ex
ponential function and related fun with continued fractions, Nieuw Arch

Wiskd 14 (1996), 221 230

M Queffelec, Transcendence des fractions continues de Thue Morse, J

Number Theory 73 (1998), 201 211

J P Allouche, J L Davison and M Queftelec, Transcendence of Stur
mian or Morphic continued fractions, J Number Theory 91 (2001),
39 66

A Robertson, H S Wilf and D Zeilberger, Permutation patterns and
continued fractions, Electronic J Combin 6 (1999), #R38

P Stambul, A generalization of Perron’s theorem about Hurwitzian num

bers, Acta Arith 80 (1997), 141 148

J Tamura, A class of transcendental numbers having explicit g adic and
Jacobi Perron expansions of arbitrary dimension, Acta Arith 61 (1995),
301 329

B G Tasoev, Certain problems in the theory of continued fractions
(Russian), Trudy Thiliss Univ Mat Mekh Astronom 16/17 (1984),
53 83

B G Tasoev, Rational approximations to certain numbers, Mat Za
metki 67 (2000), 931 937; English transl in Math Notes 67 (2000),
786 791

D S Thakur, Patterns of continued fractions for the analogues of € and
related numbers in the function field case, J Number Theory 66 (1997),
129 147

H S Wall, Analytic theory of continued fractions, D van Nostrand
Company, Toronto, 1948

15



