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1 Introduction

One way functions are the most fundamental primitive in cryptography. While there
has been no proof for the existence of one-way functions, there are some candidate
functions believed to be one-way, such as the RSA, the Rabin and the exponentiation
functions; the two formers are based on the intractability of a computational number-
theoretic problem, factoring integer problem and the latter is of another problem, dis-
crete logarithm problem. Discrete logarithm problem can be defined on any efficiently
computable cyclic group and recently, as the underlying group of problem, group of
rational points on elliptic curve has been receiving much attention.

In this paper we propose other number-theoretic candidates for one-way function,
whose one-wayness is related to the discrete logarithm problem on elliptic curve but
which are not exponentiation functions themselves, and present several pieces of evi-
dence of their one-wayness. The candidates are constructed with a certain type of en-
domorphisms on non-supersingular elliptic curve.

We also show that their one-wayness is equivalent to special cases of the co-Diffie-
Helman assumption[9, 8] and that if the one-wayness is breakable, we can construct
identity-based cryptosystems and signature schemes [7, 9] even based on the Diffi-
Hellma problem on non-supersingular elliptic curves.

1.1 Related works

The intractability of the Decision Diffie-Hellman (DDH) problem, the DDH assump-
tion, has been receiving increasing attention as an underlying assumption in the design



of provably secure schemes since the resulting schemes are often more efficient than
others [6]. However Joux and Nguyen [18] pointed out that the DDH problem in a Fq-
rational point group G of prime order on a special class of supersingular elliptic curves
over Fq with the so-called distorsion map ψ (see [28]) is easy.1 In their proof, they con-
structed a non-degenerate bilinear map ê from G to F

×

q by combining the Weil pairing
e with the distorsion map ψ as follows:

ê(·, ·) = e(ψ(·), ·) : G×G→ F
×

q ; (P1, P2) 7→ ê(P1, P2) = e(ψ(P1), P2).

Joux and Nguyen’s result on the DDH problem and the ideas of the Sakai-Ohgishi-
Kasahara [24] and the Joux [16] papers have led us to a new field in cryptography,
pairing-based cryptosystems, in the construction of which the bilinear map is used as a
building block, and recently pairing-based cryptosystem is one of the most active fields
of research in cryptography.

Many pairing-based cryptosystems are based on the above type of non-degenerate
bilinear maps (i.e., the domain consists of the direct product of two copies of a cyclic
group). On the other hand, for any cyclic group G and for any P1, P2 ∈ G, the value of
the Weil pairing e is constant (i.e., e(P1, P2) = 1). Then, in order to make pairing non-
degenerate, the distorsion map has been used, which maps points in G to points in other
cyclic group, and combination of the Weil pairing and the distorsion map achieves the
property of non-degeneracy. However it is known that there exists no distorsion map on
non-supersingular elliptic curves2 and then the underlying elliptic curves for pairing-
based cryptosystems have been often restricted to be supersingular.

Verheul [28] showed there exist point groups in which the DDH problem is easy, on
non-supersingular elliptic curves. We will discuss whether such groups can be applied
to pairing-based cryptosystems, and see that if the one-wayness of our candidates is
breakable, we can construct identity-based cryptosystems and signature schemes based
on the Diffi-Hellma problem on non-supersingular elliptic curves.

Boneh, Lynn and Shacham [9], in addition to the basic pairing-based cryptosystem
constructed with supersingular curve, also presented another modified cryptosystem
with non-supersingular curves. Boneh, Gentry, Lynn and Shacham [8] presented cryp-
tosystems that directly use the Weil or the Tate pairing in stead of the above type of
bilinear map and can be constructed with non-supersingular curves. Their cryptosys-
tems are based on an extension of the Diffie-Hellman problem, the co-Diffie-Hellman
problem, which is defined with a pair of groups of the same order. We will see that the
one-wayness of our candidates is equivalent to special cases of the co-Diffie-Helman
assumption.

Miyaji, Nakabayashi and Takano [21], Barreto, Lynn and Scott [5] and Dupont,
Enge and Morain [11] discussed constructions of non-supersingular elliptic curves for

1 It is also shown in [18] that the DDH problem on a special class of non-supersingular elliptic
curves, the trace-2 curves, is easy.

2 The non-existence of distorsion map on non-supersingular elliptic curve was shown implicitly
in [29] and explicitly in [25], and recently rediscovered in [28].



pairing-based cryptosystems using the complex multiplication theory. Barreto, Lynn
and Scott [4] discussed how to select two distinct cyclic groups of the same order in
non-supersingular elliptic curves for pairing-based cryptosystems (Similar results are
proposed in [23, 19] and see Appendix B). Using their results as building block, we
will construct our candidate one-way functions.

2 Background

In this paper, we follow the notation and definition in Silverman’s book[26] for elliptic
curves. Let E be a non-supersingular elliptic curve over a finite field with q elements,
Fq, and φ denote the qth-power Frobenius endomorphism on E. Let P ∈ E(Fq) be a
point of order l and E[l] denote the l-torsion points group.

In this paper, we assume that the order l is odd prime number other than the char-
acteristic of Fq and that l 6 |(q − 1), which imply E[l] 6⊂ E(Fq) and the trace of φ 6= 2.
Let k denote the smallest positive integer such that l|(qk − 1). Then it follows that
E[l] ⊂ E(Fqk ) (see [2]).

Since l 6 |(q − 1), a Z/lZ-linear representation of (the action of) φ on E[l] has two
distinct eigenvalues, 1 and q mod l, and then there is a point Q(6= O) ∈ E[l] such that
φ(Q)−[q mod l]Q = O. Thus we see thatE[l] is decomposed asE[l] = 〈P 〉⊕〈Q〉 and
that the cyclic groups 〈P 〉 and 〈Q〉 are the eigenspaces corresponding to the eigenvalues
1 and q mod l, and annihilated by (φ− 1) and (φ− [q mod l]), respectively. Moreover
we have the following group isomorphism:

(proj1, proj2) : E[l]→ 〈P 〉 × 〈Q〉; r1P + r2Q 7→ (r1P, r2Q)

where we define proj1 and proj2 as

proj1 : E[l]→ 〈P 〉; R 7→ proj1(R) = [(1− q)−1 mod l] ◦ (φ − [q mod l])R

proj2 : E[l]→ 〈Q〉; R 7→ proj2(R) = [(q − 1)−1 mod l] ◦ (φ− 1)R.

There are l+1 subgroups of order l inE[l], which consist of the two eigenspaces 〈P 〉
and 〈Q〉, and the other l − 1 groups different from the eigenspaces, G1, . . . , Gl−1. The
Frobenius endomorphism φ sends any group Gi to other group Gj (i.e., φ(Gi) = Gj

and i 6= j). Verheul [28] showed the DDH problem in any non-eigenspace Gi is easy,
where it was used that for the Weil or the Tate pairing e, e(φ(·), ·) is a non-degenerate
bilinear map from Gi to F

×

qk .
On the other hand, the endomorphisms proj1 and proj2 send anyGi to the eigenspaces

〈P 〉 and 〈Q〉, respectively. Then, by constructing the non-degenerate bilinear map of the
form e(proj(·), ·) fromGi to F

×

qk , we obtain the same result on the DDH problem as in
[28].

Note: Since proj1 and proj2 commute with any endomorphism, each eigenspace of the
Frobenius endomorphism is stable by the action of any endomorphism α (i.e.,α(〈P 〉) ⊂
〈P 〉 and α(〈Q〉) ⊂ 〈Q〉 for any α ∈ End(E)). Then for any α, e(α(·), ·) should not



be non-degenerate on 〈P 〉 nor 〈Q〉. Hence the techniques of combination of the Weil
or the Tate pairings with endomorphism cannot be applied to the DDH problems in the
eigenspaces, 〈P 〉 and 〈Q〉.

By using non-eigenspace 〈R〉 and the non-degenerate bilinear map e(proj1(·), ·),
we can construct variants of the key agreement protocols in [16, 1, 28] and the verifi-
able random function in [10].3 On the other hand, our cyclic group 〈R〉 would not be
directly applicable to other important areas of pairing-based cryptosystems, identity-
based cryptosystems and signature schemes (e.g, [7, 9]), since embedding identities into
the group and constructing hash function that outputs elements in 〈R〉 and behaves as
truly random function seem difficult. Indeed, instead of the problems in such groups,
the cryptosystems based on non-supersingular curves in [7, 9] adopt other problems (the
co-BDH and co-DH problems) as the underlying problems (see also Section 3.3).

Remark: We will see that if the one-way function F in next section is breakable, we
can realize identity-based cryptosystems and signature schemes based on 〈R〉.

3 Candidate one-way functions

This section suggests to use two type of endomorphisms as candidates of one-way
functions, discusses several pieces of evidence of their conjectured one-wayness and
presents other properties. This paper follows Goldreich’s book[14] and Goldwasser and
Bellare’s note[15] for one-way functions.

As well as almost popular candidate one-way functions, the candidates suggested
in this paper also are described as collections of functions; A collection of functions is
an infinite set of indexed functions {fi} such that each function fi operates on a finite
domainDi and all functions share a single evaluation algorithm F which, given as input
a representation (index) i of a function fi and an element x in the domain Di, returns
the value fi(x) (i.e., F (i, x) = fi(x)).

In addition, a collection of one-way functions is required that any efficient algo-
rithm, when given an index of i and fi(x), cannot retrieve x, except with negligible
probability. Formally:

Definition 1. (Collection of one-way functions): A collection of one-way functions
{fi} is called one-way if there exist three probabilistic polynomial-time algorithms
I,D and F such that the following conditions hold:

1. Easy to sample and compute:
I , on input 1n (n: security parameter), outputs an index i.
D, on input i, outputs x ∈ Di.
F , on input i and x ∈ Di, outputs F (i, x) = fi(x).

2. hard to invert: For any probabilistic polynomial-time algorithm A, there exists a
negligible function µA such that

Pr[A(i, y) = x ; i← I(1n), x← D(i), y = F (i, x)] ≤ µA(n)

3 Note that 〈R〉 is polynomially recognizable and that the uniform distribution over 〈R〉 is poly-
nomially samplable.



where the probability is taken over the coin-tosses of A, I and D.

3.1 A candidate of collection of one-way functions F

We suggest a candidate of collection of one-way functions F = (I,D, F ) which con-
sists of three probabilistic polynomial-time algorithms: an index generation algorithm
I , a domain sampling algorithm D, a function-evaluation algorithm F :

Index generation algorithm I: On input 1n (n: security parameter), the index generation
algorithm I outputs an index i = (E,Fq , l,Fqk , R), a polynomial-size representation
of (E,Fq , l,Fqk , R). We assume that (E,Fq, l,Fqk , R) satisfy the following:

– E is a non-supersingular elliptic curve over Fq.
– l is a prime number coprime to q.
– l divides #E(Fq) and does not divide (q − 1).
– k is the smallest positive integer such that l|(qk − 1).
– R is an Fqk -rational point of order l such that proj1R 6= O and proj2R 6= O.
– There is a polynomial p(·) such that the size of q and l is upper-bounded by p(n)

and the size of k is upper-bounded by log p(n).

I can be constructed by using the methods of non-supersingular curve generation in
[21, 5, 11] and the methods of group selection in [4, 23, 19] or in Appendix B.

Domain sampling algorithm D: The domain sampling algorithm D takes an index i as
input and outputs a point R′ which is randomly and uniformly distributed over 〈R〉. D
can be realized by randomly choosing r ∈ Zq and outputting R′ = [r]R.

Function-evaluation algorithm F : The function-evaluation algorithm F takes an index
i and a pointR′ ∈ 〈R〉 as input and returns fi(R

′)(= F (i, R′)) and fi is constructed as
follows:

fi(·) = F (i, ·) : 〈R〉 → 〈P 〉; R′ 7→ fi(R
′) = (φ− [q mod l])R′

where P denotes an Fq-rational point of order l.

The conjectured one-wayness of F = (I,D, F ) is described as follows: For any
probabilistic polynomial-time algorithm A, there exists a negligible function µA such
that

Pr

[

A(i, P ′) = R′ ;
i = (E,Fq, l,Fqk , R)← I(1n),

R′
R
← 〈R〉, P ′ = (φ− [q mod l])R′

]

≤ µA(n)

where the probability is taken over the coin-tosses of A, I and the choices of R′.

Instead of (φ− [q mod l]), we can use other efficiently computable endomorphisms
that induce isomorphisms from 〈R〉 onto 〈P 〉, such as proj1 and Tr =

∑k−1

i=0
φi.

[Evidence of one-wayness of F]
Here we discuss several pieces of evidence of the one-wayness of F .



– There is no endomorphism of E that maps 〈P 〉 onto 〈R〉
Since any endomorphism commutes with φ, End

Fq
(E) = EndFq

(E) holds [25,
29, 28].

– The DDH assumption in 〈P 〉 implies the one-wayness of fi

It is easy to see that if the one-wayness of fi does not hold, then the DDH assump-
tion in 〈P 〉 is not valid.
On the other hand, Verheul [28] showed there is no distorsion map that sends 〈P 〉
to other group. Then the construction of non-degenerate bilinear map by combining
pairing with distorsion map cannot be applied to this case. Thus the DDH assump-
tion in 〈P 〉 still remains valid.

– The skewed-DH assumption is equivalent to the one-wayness of F.
Here we consider a variant of the usual DH problem, the skewed-DH problem.
Let P an Q be eigenvectors corresponding to the eigenvalues 1 and q mod l, re-
spectively. Let P ′ be a random point in 〈P 〉.
The skewed-DH problem is

given P,Q, P ′, to find Q′ ∈ 〈Q〉 such that logP P
′ = logQQ

′.

We say the skewed-DH assumption holds if the skewed-DH problem is intractable.
The skewed-DH assumption is equivalent to the one-wayness of our proposed can-
didate (See Appendix A for detail).

As we have seen, the one-wayness of fi is strongly related to the hardness of prob-
lems on 〈P 〉. We also note that the one-wayness of fi implies the discrete logarithm
assumption in 〈P 〉.

[Properties of fi]
In addition to the conjectured one-wayness, fi has the following properties:

– (Commutative) random self-reducibility
Since fi is an isomorphism, the relation Ri = {(fi(y), y)|y ∈ 〈R〉} is (commuta-
tive) random self-reducible [27, 22].

– Isomorphism from the Gap-DH group to the DDH group
The DDH problem in 〈R〉 is easy and the DH problem seems intractable. As we
have discussed, the DDH problem in 〈P 〉 still remains intractable. fi is conjectured
to map the Gap-DH group to the DDH group.

– Efficiency
Boneh and Franklin [7] and Verheul [28] discussed the one-wayness of bilinear
maps based on the Weil or the Tate pairings, which the bilinear maps also are con-
jectured to be maps from the Gap-DH group to the DDH group.
While the evaluation of bilinear maps require the costly computation of pairings,
fi is efficiently computable endomorphism.

– Efficiently recognizable domain and range
R′(∈ E[l]) is in 〈R〉 if and only if e(R,R′) = 1 for the Weil pairing e. Then the
domain 〈R〉 is polynomially recognizable.



3.2 Another candidate of collection of one-way functions F
′

Another candidate of a collection of one-way functions F ′ = (I,D, F ′) consists of the
same index generation algorithm I and the same domain sampling algorithm D as of
the previous candidate, and another function-evaluation algorithm F ′.

The function-evaluation algorithm F ′ takes an index i and a pointR′ ∈ 〈R〉 as input
and returns f ′

i(R
′)(= F ′(i, R′)) and f ′

i is constructed as follows:

f ′

i(·) = F ′(i, ·) : 〈R〉 → 〈Q〉; R′ 7→ f ′

i(R
′) = (φ − 1)R′

where Q denotes an Fqk -rational point of order l such that (φ− [q mod l])Q = O.

Instead of (φ − 1), we can use other efficiently computable endomorphisms that
induce isomorphisms from 〈R〉 onto 〈Q〉, such as proj2.

[Evidence of one-wayness of F ′]
Here we discuss several pieces of evidence of the one-wayness of F ′.

– There is no endomorphism of E that maps 〈Q〉 onto 〈R〉
Since any endomorphism α commutes with (φ − [q mod l]), 〈Q〉 is stable by the
action of α (i.e., For any α and Q′ ∈ 〈Q〉, α(Q′) ∈ 〈Q〉 holds).

– The DDH assumption in 〈Q〉 implies the one-wayness of f ′

i

Since there is no endomorphism that sends 〈Q〉 to other group, the construction of
non-degenerate bilinear map by combining pairing with distorsion map cannot be
applied to this case. Thus the DDH assumption in 〈Q〉 still remains valid.

– A variant of the skewed-DH assumption is equivalent to the one-wayness of F ′.
Here we consider a variant of the skewed-DH problem defined in the previous sub-
section.
Let P an Q be eigenvectors corresponding to the eigenvalues 1 and q mod l, re-
spectively. Let Q′ be a random point in 〈Q〉.
The variant of the skewed-DH problem is

given P,Q,Q′, to find P ′ ∈ 〈P 〉 such that logP P
′ = logQQ

′.

The intractability of this problem is equivalent to the one-wayness of F ′.

f ′

i has almost the same properties as shown on fi in the previous subsection. We
note that the range of f ′

i has efficiently recognizable since Q′(∈ E[l]) is in 〈Q〉 if and
only if (φ− [q mod l])Q′ = O.

3.3 The co-Diffie-Hellman problem

The skewed-DH problem and the variant in the previous subsections can be seen as
special cases of the co-Diffie-Hellman problem[9, 8].

The co-Diffie-Hellman (co-DH) problem on (G1,G2) Let G1 and G2 be cyclic groups
of order l generated by P1 and P2, respectively. The co-Diffie-Hellman problem on



(G1,G2) is given (P1, aP1, P2) to compute aP2.

In addition to the GDH signature, which constructed with supersingular curves and
is proved to be unforgeable under the Diffie-Hellman assumption, Boneh, Lynn and
Shacham [9] also presented a modification of the GDH signature, the co-GDH signa-
ture.
The co-GDH signature (basic scheme)
Key generation Pick a random a ∈ Z/lZ and compute V = aP1 ∈ G1. The public

key is V and the secret key is a.
Signing Given a secret key a and a message m, compute a hash value H = H(m) ∈

G2 and S = aH ∈ G2. The signature of m is σ.
Verification Given a public key V , a message m and a signature S, compute a hash

value H = H(m) ∈ G2. Output “valid” if and only if e(S, P1) = e(H,V ) where
e denotes the Weil or the Tate pairing.

The co-GDH signature is proved to be secure under special cases of the co-DH assump-
tion. More precisely, under the setting

(G1,G2) = (〈R〉, 〈P 〉),

there exist efficient isomorphisms f from G1 onto G2 (e.g., the trace map, proj1) and
then the unforgeability of the corresponding co-GDH signature can be proved in the
random oracle model by letting a hash value and the corresponding signature be [r] ◦
f(P1) and [r] ◦ f(aP1) for random r, respectively, in the simulations of signing and
random oracles. Note that the co-GDH signature uses points in G1 to define public keys
and embeds conventional hash values into the Fq-rational point group G2.

Interestingly, even though the unforgeability of the co-GDH signature under the
setting

(G1,G2) = (〈Q〉, 〈P 〉)

would not be directly proved because there exist no endomorphisms that induces iso-
morphisms from G1 onto G2, it can be derived from the unforgeability of the co-GDH
signature under the setting (G1,G2) = (〈R〉, 〈P 〉).

The skewed-DH problem for F and the variant skewed-DH problem for F ′ can be
seen as special versions of the co-DH problem as follows:

The skewed-DH problem for F (〈P 〉, 〈Q〉)
The variant problem for F ′ (〈Q〉, 〈P 〉)
The underlying problem of the co-GDH signature (〈R〉, 〈P 〉)

It is easy to see that he co-DH assumptions on (〈R〉, 〈Q〉) and (〈R〉, 〈P 〉) implies the
skewed-DH assumption and the variant. Then it is concluded that the co-GDH signature
should adopt the variant of the skewd-DH assumption (i.e., the setting of (G1,G2) =
(〈Q〉, 〈P 〉)).

Remark 1: The challenges given to the adversaries against the one-wayness of our can-
didates can be also seen as special cases of the co-Diffie-Hellman problem as follows:



The challenge for the one-wayness of F (〈P 〉, 〈R〉), fi(P2) = P1

The challenge for the one-wayness of F ′ (〈Q〉, 〈R〉), f ′

i(P2) = P1

Remark 2: Note that the co-GDH signature uses a pair of groups on which the Decision
co-Diffie-Hellman problem is easy.
The Decision co-Diffie-Hellman problem on (G1,G2) Let G1 and G2 be cyclic groups
of order l generated by P1 and P2, respectively. The Decision co-Diffie-Hellman prob-
lem on (G1,G2) is given (P1, aP1, P2, bP2) to decide whether or not a = b mod l
holds.
We easily see that unless G1 = G2 = 〈P 〉 nor 〈Q〉, the Decision co-DH problem on
(G1,G2) is easy.

4 Conclusion

We have proposed candidates of collection of one-way functions. Their one-wayness is
equivalent to the skew-DH assumption and the variant, which are special cases of the
co-DH assumption. We would like to mention that if the one-wayness of proj1 is break-
able, we can construct identity-based cryptosystems and signature schemes based on the
DH problem on non-supersingular curves by embedding identities or conventional hash
values into the range 〈P 〉 and sending them to the domain 〈R〉.

We conclude by summarizing open questions that have appeared in this paper:

– the DDH, DH, DL problems in the eigenspaces 〈P 〉 and 〈Q〉
– the DH, DL problems in the non-eigenspace 〈R〉
– the one-wayness of fi and f ′

i (equivalently, the skewed-DH assumption and the
variant)

– reducibility between these problems
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A The skewed-DH assumption is equivalent to the one-wayness of
F

Here assume for simplicity that fi = proj1.
We define the skewed-DH problem and the skewed-DH assumption.
Let I ′ be a problem instance generation algorithm that takes 1n (n: secuirty param-

eter) as input and outputs an instance of problem, i′ = (E,Fq, l,Fqk , P,Q, P ′), where
the parameters E,Fq, l and Fqk are the same as of I ; P is a point of order l such that
φ(P ) − P = O; Q is a point of order l such that φ(Q) − [q mod l]Q = O; P ′ = [r]P
for randomly chosen r ∈ Z/lZ.

The skewed-DH problem with respect to I ′ is

for given (E,Fq , l,Fqk , P,Q, P ′), to find Q′ ∈ 〈Q〉 such that logP P
′ = logQQ

′.

We say the skewed-DH assumption with respect to I ′ holds if the skewed-DH problem
with respect to I ′ is intractable. Formally, the skewed-DH assumption with respect to
I ′ is that for any probabilistic polynomial-time algorithm A′, there exists a negligible
function µA′ such that

Pr

[

A′(i′) = Q′ and logP P
′ = logQ Q

′

; i′ = (E,Fq, l,Fqk , P,Q, P ′)← I ′(1n)

]

≤ µA′(n)

where the probability is taken over the coin-tosses of A′ and I ′.

Assume that the distribution ensemble of the output of a problem instance genera-
tion algorithm I ′ is identical to the following distribution ensemble constructed with an
index generation algorithm I of F ,
{

i′ = (E,Fq , l,Fqk , proj1(R), proj2(R), P ′) ;
i = (E,Fq, l,Fqk , R)← I(1n),

R′
R
← 〈R〉, P ′ = proj1(R

′)

}

,

or that the distribution ensemble of the challenge (i, P ′) = ((E,Fq , l,Fqk , R), proj1(R
′))

given to the adversaries against the one-wayness of F = (I,D, F ) is identical to the
following distribution ensemble constructed with a problem instance generation algo-
rithm I ′,
{

(i, P ′) = ((E,Fq , l,Fqk , P +Q), P ′) ; i′ = (E,Fq, l,Fqk , P,Q, P ′)← I ′(1n)
}

.

Then we see the skewed-DH assumption with respect to I ′ is equivalent to the one-
wayness of F = (I,D, F ) as follows:

– Assume that there exists an efficient algorithm A′ for the skewed-DH problem.
We construct an efficient algorithm that breaks the one-wayness as follows: On
input i = (E,Fq, l,Fqk , R) and P ′ = proj1(R

′), we run A′ with input i′ =



(E,Fq , l,Fqk , proj1(R), proj2(R), P ′) and obtain Q′ = A(i′). Then we return
R′ = P ′ +Q′ as the preimage of P ′.
We see that R = P + Q and P ′ = [r]P for randomly distributed r ∈ Z/lZ. If A′

succeeds, Q′ = [r]Q holds and then R′ = [r](P +Q) holds.
– Assume that there exists an efficient algorithm A that breaks the one-wayness. We

construct an efficient algorithm for the skewed-DH problem as follows: On input
i′ = (E,Fq, l,Fqk , P,Q, P ′), we runAwith input P ′ and i = (E,Fq , l,Fqk , P +Q)
and obtainR′. Then we returnQ′ = R′−P ′ as the answer of the DH-like problem.
If P ′ = [r]P and A succeeds, R′ = [r](P +Q) holds. Then we have Q′ = [r]Q.

B A method of group selection

Here we summarize the method of group selection presented in [23, 19], which can be
used for computing the Weil or the Tate pairings. More precisely, the method generates
a point S(6= O) ∈ E[l] such that (φ − [q mod l])S = O.

First we study the group structure of the l-part of E(Fqk ). In the previous sections,
we used a Z/lZ-linear representation of the qth-power Frobenius endomorphism φ on
E[l], whereas here we consider a representation φl of φ on the l-adic Tate module Tl(E).
Recall Tl(E) is isomorphic to {(R1, R2, . . .) ∈ ⊕

∞

i=1E[li] ; [l]Rj+1 = Rj for any j}.
We saw in the previous sections that under the assumption l 6 |(q−1), the eigenequation
of Z/lZ-linear representation of φ has two distinct roots. Then the eigenequation of φl

has two distinct l-adic integer roots λ1, λ2 such that λ1 = 1+cld and λ2 = (q mod l)+
c′le for some rational integers d, e and some c, c′ in Z

×

l . Thus Tl(E) can be decomposed
as Tl(E) = Tλ1

⊕ Tλ2
where the eigenspaces Tλ1

and Tλ2
correspond to λ1 and λ2,

respectively. Let (Tλj
)i be the i-th component of the eigenspace Tλj

, (Tλj
)i = {R ∈

E[li];φR = λjR}. Then, it is easy to see that (Tλ1
)i and (Tλ2

)i are cyclic groups of
order li. Note that since λ1 = 1 + cld and c ∈ Z

×

l , the l-part of E(Fq) is (Tλ1
)d. Using

these notations, it is easy to see that for any k′, (Tλ1
)d+1 ⊂ E(Fk′

q ) ⇔ l|k′. On the
other hand, since k is the minimum integer such that qk ≡ 1 (mod l), it follows that
k|(l − 1). Then for such k, we have (Tλ1

)d+i ∩ E(Fqk ) = (Tλ1
)d for any i.

Consequently, if f is the integer such that lf ||#E(Fqk ), then we can determine the
group structure of the l-part of E(Fq) as follows:

the l-part of E(Fqk ) = (Tλ1
)d ⊕ (Tλ2

)f−d.

Now we describe an algorithm for picking up the point S(6= O) in E[l] such that
(φ− [q mod l])S = O in the case of l 6 |(q − 1).

Let m be the cardinality of E(Fqk ),

Algorithm
[Step 1] Choose any point P ∈ E(Fqk ), and compute P ′ = [m/lf ]P .
[Step 2] Compute P ′′ = φ(P ′)− P ′. If P ′′ = O goto Step 1.
[Step 3] Find the minimum integer j such that [lj ]P ′′ = O, and output S = [lj−1]P ′′.

If we choose a point P inE(Fqk ) randomly and uniformly, the point P ′ = [m/le]P
is uniformly distributed on the l-part of E(Fqk ).



Because (φ − 1) annihilates only the (Tλ1
)d part of the decomposition, the point

P ′′ is uniformly distributed on (Tλ2
)f−d. Thus the probability that P ′′ = O is less than

1/lf−d.


