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Abstract

This paper is about the implementation of algorithms which determines the
structure of 3 finite abelian groups on the system NZMATH for number theory.
Namely, we want to compute the following: (i) the ring class groups of imagi-
nary quadratic fields, (ii) the group of rational points of elliptic curves over Fp,
(iii) the jacobian of hyperelliptic curves of genus 2 over Fp. All of these can be
accomplished in a similar fashion. That is, for an arbitrary finite abelian group,
if we can list up all the n elements of the group explicitly and execute the op-
eration of two elements of the group, then we can determine the corresponding
group structure. We may employ any of the three methods. First, we can make
an operation table betweem the listed elements of the group. Unfortunately,
this method is quite slow. Secondly, we can count the number of elements of
prime power order for each prime factor of n, which requires the factorization
of n and will be explained later. Lastly, we can apply the baby step giant step
(BSGS) algorithm. This method is probabilistic but is the most efficient. For
imaginary quadratic fields, we can employ the subexponetial algorithm under
the extended Riemann hypothesis (ERH). For elliptic curves, we can use the
known fact about the group structure and also the Weil pairing.

1 Computing the group structure of a finite abelian
group

In order to compute the group structure of a finite abelian group of order n, we
assume that all the n elements of the group are known explicitly and that the
operation of two elements of the group is executable. First, we find the prime
factorization

n = pn1
1 · p

n2
2 · · · p

nm
m .
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If n1 = n2 = · · · = nm = 1, then the group structure is isomorphic to the cyclic
group Zn. For the primes pi of exponent greater than 1, we count the number of
elements of order pi, p

2
i , · · ·, p

ni
i . The computations from the previous steps yields

the desired group structure. In practice, there are not so many cases with many
prime factors of n having high exponents.

2 Imaginary Quadratic Fields

2.1 Ring Class Groups of Imaginary Quadratic Fields

For d ∈ Z, d < 0 and d ≡ 0 or 1 (mod 4), we have the following notations:
Od := Z + d+

√
d

2 Z: the imaginary quadratic order of discriminant d.
Id: the multiplicative group of non-zero fractional Od-ideals.
Id ≥ Pd := {αOd | 0 6= α ∈ Q(

√
d)}, the group of principal Od-ideals.

Cd := Id/Pd: the Od-ideal class group, which is finite abelian.
If d is a fundamental discriminant, then Cd is the ideal class group of Q(

√
d).

The main problem is to the determine the structure of Cd. This problem may
be broken down into 3 steps.

2.2 The structure of Cd.

The first task is to list up the elements of Cd. Note that every element of Cd can be
represented by a triple (a, b, c) ∈ Z3, such that

a > 0, b2 − 4ac = d, gcd(a, b, c) = 1.

The corresponding primitive Od-ideal is

M(a, b, c) = aZ +
−b +

√
d

2
Z.

We can make this representation unique by transforming to the reduced Od-ideal
such that

−b +
√

d

2a
∈ F .

Here F is the set of z ∈ C, Im(z) > 0, satisfying either

|z| ≥ 1 and − 1
2
≤ Re(z) ≤ 0

or
|z| > 1 and 0 < Re(z) <

1
2
.

We have the following algorithm:
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Algorithm 1 (Find the elements of Cd.)
INPUT: d ∈ Z, d < 0 and d ≡ 0 or 1 (mod 4)
OUTPUT: (a, b, c) as above and the order of Cd

This procedure is clear owing to the fact that

|b| ≤ a ≤
√
|d|
3

.

The second task is to determine the product of two primitive ideals. Its descrip-
tion is readily seen from the algorithm below:

Algorithm 2 (Multiplying primitive ideals)
INPUT: Primitive Od-ideals M1 = M(a1, b1, c1) and M2 = M(a2, b2, c2)
OUTPUT: A primitive Od-ideal M = M(a, b, c) ∈M1M2Pd

1. Find s, t, u, v, w ∈ Z where

s =
b1 + b2

2
, t = gcd(a1, a2, s) = ua1 + va2 + ws.

2. Set

a =
a1a2

t2
, b = b2 +

2a2

t
(v(s− b2)− wc2), c =

b2 − d

4a
.

Note however that the output here is not necessarily reduced. That part will be
accomplished in the next algorithm.

The third task is to reduce primitive Od-ideals which we obtained previously.

Algorithm 3 (Reduction of Ideals)
INPUT: A primitive Od-ideal M0 = M(a0, b0, c0)
OUTPUT: The unique reduced primitive Od-ideal M = M(a, b, c) ∈M0Pd

1. Set (a, b, c)← (a0, b0, c0).

2. If b ≤ −a or b > a, set b ← b − 2aq, c ← c + bq + aq2, where b = 2aq + r with
−a < r ≤ a.

3. If a > c, set (a, b, c)← (c,−b, a) and goto Step 1. Otherwise output (a, b, c).

With this, the operations in Cd may be executed explicitly.

Example 1 Let d = −998775 = −32 · 52 · 23 · 193. Then the Od-ideal class group in
Q(
√
−4439) is given by Cd

∼= Z⊕ Z2 ⊕ Z2 ⊕ Z19.
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3 Elliptic Curves

3.1 Preliminaries

Let K = Fq be a finite field with q elements and K be its algebraic closure.
For g ∈ Z, g > 0, h(u), f(u) ∈ K[u], deg h ≤ g, deg f = 2g + 1 and f is monic, we
will use the following notations:

C: (non-singular) hyperelliptic curve of genus g defined over K by

C : v2 + h(u)v = f(u).

D: the (additive) group of divisors of C.
D0: the group of divisors of degree 0.
P: the group of principal divisors div(R) for some non-zero rational function

R ∈ K(C). For D1, D2 ∈ D, we denote D1 ∼ D2 if D1 −D2 ∈ P.
J = D0/P: the jacobian of C.
J(K): the group of all divisor classes in J that have a representative that is

defined over K. This is finite abelian.
The main problem is to determine the structure of J(K).
A hyperelliptic curve of genus 1 is an elliptic curve, and we denote E = C.

In this case, the group E(K) of K rational points of E is isomorphic to J(K).

In 2004, Komai implemented NZMATH.elliptic the basic package for elliptic
curves on NZMATH [3]. For this project, we extend the package by including Weil-
Pairing and Miller’s algorithm which computes the group structure of an elliptic
curve over K = Fp for a finite prime field.

3.2 The Weil Pairing

The points of finite order on an elliptic curve are two-dimensional. More specifically,
suppose that K is a field of characteristic p, which is perfect(i.e., Kp = K), Ω is a
fixed algebraic closure of K, and n is a positive integer, relatively prime to p. For
P ∈ E, we denote its divisor by (P ) ∈ D and E[n] as the set of points on E of order
dividing n. As an Abelian Group, we have

E[n](Ω) ∼= Zn × Zn

where Zn denotes the cyclic group of order n.
The Weil pairing is a non-degenerate inner product defined on points of E[n](Ω).

Unlike the more familiar inner product defined on vector spaces, it is alternating
(i.e. for all v we have 〈v, v〉 = 0).

For a divisor D =
∑

P∈E mP (P ) ∈ D, the support of D is given by

{P ∈ E|mP 6= 0} .
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Definition 1 (Weil Pairing) Let n > 1 be an integer, P , Q ∈ E[n], and let DP ∼
(P )−(O), DQ ∼ (Q)−(O) be divisors on an elliptic curve, E, with disjoint supports,
such that nDP , nDQ ∼ 0. This means that there are functions fP and fQ such that
nDP = div(fP ), nDQ = div(fQ). We define the Weil pairing by

en(P,Q) =
fP (DQ)
fQ(DP )

.

To compute em(P,Q), we pick random points R1, R2 ∈ E(K) such that the
divisor DP = (P + R1) − (R1) and DQ = (Q + R2) − (R2) have disjoint support.
Then

en(P,Q) =
fDP

((Q + R2)− (R2))
fDQ

((P + R1)− (R1))
=

fDP
(Q + R2)

fDP
(R2)

fDQ
(R1)

fDQ
(P + R1)

.

Miller’s algorithm computes fDP
(Q), Q 6= O.

Input: K, E/K, P,Q ∈ E[n] n =
∑t

i=0 ki2i, ki ∈ {0, 1}

Output: fDP
(Q)

We do not go into the details of this procedure. Please refer to [2].

3.3 Weil Pairing with Miller’s Algorithm

We now give a short description of an algorithm by Miller:

Algorithm 4 (Miller)
INPUT: K, E/K, P,Q ∈ E[n]
OUTPUT: en(P,Q)

1. Find Point R1, R2 ∈ E[n].

2. Set f =
fDP

(Q+R2)

fDP
(R2)

fDQ
(R1)

fDQ
(P+R1) .

3. Return f.

This algorithm has a very high probability of working with the choice of R1, R2

(the probability of failure is at most O( log p
p )).

In the rare event that a division by zero occurs during the computation of
en(P,Q) we simply pick new random points R1, R2 and repeat the process.
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3.4 The Group Structure of E(K)

In this subsection we discuss the group structure of the group E(K) where K is a
finite field. In particular we give a fast algorithm for determining the group structure
which makes essential use of the fast algorithm to calculate the Weil pairing.

It is known that the group structure of E(K) is always either cyclic, or the
product of two cyclic group order d1 and d2 where d1 | d2.

The following algorithm runs in polynomial time (log q) if the factorization of
gcd(q − 1, N) is known, where N is the order of the E(K).

Algorithm 5 (Finding the group structure of E(K))
INPUT: K, E/K
OUTPUT: The group structure (n1, n2) of E(K)

1. Compute exact N = #E(K).

2. Compute N = N0N1 where gcd(N0, N1) = 1, and the set of prime divisors of N0

is the same as the set of prime divisors of gcd(q − 1, N).

3. Take two points P ′, Q′ ∈ E(K), and set P = N1P
′, Q = N1Q

′.

4. Find the exact order of P and Q (this is where we need the factorization of N0).
Say they are m and n.

5. Set r = lcm(m,n).

6. Set a = er(P,Q).

7. Find the exact order of a. Say it’s s.

8. If rs = N0:
Return (rN1, s).
Else:
Go to step 3.

Example 2 E : y2 = x3 + 4 over F997

#E(F997) = 1008
E(F997) ∼= Z12 × Z84

4 Hyperelliptic Curves

A hyperelliptic curve of genus greater than 1 has a more complicated arithmetic
than elliptic curves since the rational points over K do not form a group.
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In our NZMATH package, we implemented algorithms to compute the group
structure of the jacobian J(K) of hyperelliptic curves of genus g = 2 over finite
prime fields K = Fp.

4.1 Mumford Representation

Every D ∈ J(K) is represented by a semi-reduced divisor. For a detailed discus-
sion, please refer to [5]. For any polynomials a(u)(6= 0), b(u) ∈ K[u], we denote
div(a, b) = gcd(div(a(u)),div(b(u)− v)).
Further, every D ∈ J(K) can be uniquely represented by two polynomials a(u), b(u) ∈
K[u] so that D = div(a, b), which is called a reduced divisor, where

1. a(u) is monic,

2. degub < degua ≤ g, and

3. a(u) divides (b(u)2 + b(u)h(u)− f(u)).

In the case of genus g = 2 hyperelliptic curve, we can easily list up all the reduced
divisors.

4.2 Adding Reduced Divisors

Now we will present an algorithm on how to effectively add 2 elements of the jaco-
bian, known as Cantor’s Algorithm.

Algorithm 6 (Cantor)
INPUT: Reduced divisors D1 = div(a1,b1) and D2= div(a2,b2)
OUTPUT: A semi-reduced divisor D=div(a,b) defined over K such that D ∼ D1 +
D2

1. Use the extended Euclidean algorithm to find polynomials d1, e1, e2 ∈ K[u] where
d1=gcd(a1,a2) and d1=e1a1 + e2a2.

2. Use the extended Euclidean algorithm to find polynomials d, c1, c2 ∈ K[u] where
d=gcd(d1,b1 + b2 + h) and d=c1d1 + c2(b1 + b2 + h).

3. Let s1 = c1e1, s2 = c1e2, and s3 = c2, so that

d = s1a1 + s2a2 + s3(b1 + b2 + h)

Set
a =

a1a2

d2

b =
s1a1b2 + s2a2b1 + s3(b1b2 + f)

d
mod a.
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Unfortunately, this algorithm yields only a semi-reduced divisor. Next, we
present an algorithm that finds its equivalent reduced divisor.

Algorithm 7 (Computing reduced divisors)
INPUT: A semi-reduced divisors D = div(a,b) over K.
OUTPUT: A unique reduced divisor D′=div(a′,b′) such that D′ ∼ D.

1. Set

a′ =
f − bh− b2

a

and
b′ = −h− b(moda′)

2. If degua′ > g then set a← a′, b← b′ and go to step 1.

3. Let c be the leading coefficient of a′, and set a′ ← c−1a′.

4. Output (a′,b′).

Example 3 C : v2 + uv = u5 + 5u4 + 6u2 + u + 3
Fp = F227

number of points in C(Fp): 183
number of special point(s): 1
number of reduced divisors: 42212
Group Order: 42396=23 · 3 · 3533
Div of Order 2: 3
Since there are three elements of order 2, then J(Fp) over F227 is isomorphic to
Z2 × Z21198.

5 Future Implementations

• For the imaginary quadratic field part, we are currently working on a program
to compute the group structure of the ring class group using the BSGS al-
gorithm. Next, we plan to implement the subexponetial algorithm under the
ERH.

• For elliptic curves, the BSGS to determine the group structure of its rational
points is also in progress. We also intend to use the Weil pairing for cryptologic
application.

• For the hyperelliptic package, since the program to compute the group struc-
ture is rather slow, we are working on the BSGS program (from the paper of
Matsuo, et.al. entitled Baby Step Giant Step Algorithm for Point-Counting
on Hyperelliptic Curves) to make the computation faster.
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