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Abstract. Feng and Xiong described Selmer groups of elliptic curves con-

cerned with the congruent number problem. They used the traditional
2-descent method, and mentioned interesting relation between Selmer groups
and some graphs. In this article, we give an analogous result about π/3-
congruent number problem. For the proof, we use an early result given by the

author.

1. Introduction

A positive integer n is called a congruent number (CN) if it is the area of a right
triangle with rational sides. The congruent number problem means the question
of determining whether a given positive integer is a CN or not. Clearly, we may
assume without loss of generality that n is a squarefree natural number. It is well
known that n is congruent if and only if the Mordell-Weil rank of the following
elliptic curve En is positive (see Koblitz [14, chap.1] or Knapp [13, pp.52,53,88]).

En : y2 = x(x + n)(x − n).

Tunnell’s theorem ([20]) gives a simple criterion for determining whether a given
n is congruent or not. This criterion is valid if the weak form of the Birch and
Swinnerton-Dyer conjecture is true. On the other hand, many mathematicians
investigated the rank of En by so-called 2-descent method ([1], [6], [7], [11], [15], [17]).
We recall some details about the 2-descent method in §2. For example, the following
squarefree positive integers are non-CN’s. In this article, p, pi, q, qj denote prime
numbers and (∗/∗) the Legendre symbol.

n = p ≡ 3 (mod 8),

n = 2p, p ≡ 5 (mod 8),

n = pq, (p, q) ≡ (3, 3) (mod 8),

n = pq, (p, q) ≡ (1, 3) (mod 8), (p/q) = −1,

n = 2p1 · · · pt, pi ≡ 5 (mod 8), (pj/pi) = 1 for i < j.

Recently, Feng and Xiong [5] described these non-CN’s using terms of graph theory.
In §3, we introduce summary of their result.

Fujiwara [3] defined the generalized concept, θ-congruent numbers by considering
triangles with rational sides and an angle θ. In this article, we focus our attention
on the case of θ = π/3.

Definition. A natural number n is called a π/3-congruent number (π/3-CN) if
n
√

3 is the area of a triangle with rational sides and an angle π/3.
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The π/3-congruent number problem is also connected with the following elliptic
curves:

En,π/3 : y2 = x(x + 3n)(x − n).

Fujiwara showed that n is π/3-congruent if and only if n = 1 or the rank of En,π/3

is positive. Note that the regular triangle (2, 2, 2) has the area
√

3 and the angle
π/3, however, the rank of E1,π/3 is zero. Fujiwara [3], Kan [12], Yoshida [21] and
the author [8], [9] independently investigated the rank of En,π/3 by the 2-descent
method. For example, the following squarefree positive integers are non-π/3-CN’s.

n = p, p ≡ 5, 7, 19 (mod 24),

n = 2p, p ≡ 7, 13 (mod 24),

n = 3p, p ≡ 5, 11, 17, 19 (mod 24),

n = pq, (p, q) ≡ (7, 7) (mod 24),

n = pq, (p, q) ≡ (1, 7) (mod 24), (p/q) = −1.

The aim of this article is to give “π/3-analogy” of the result which is due to Feng
and Xiong. In §4, we describe and prove the main result. For the proof, we use an
early result given by the author, which is recalled in §2.

2. Selmer groups

In this section, we recall the definition of the Selmer group. For details, see
[19, chap.3] and [18, chap.10]. We also recall some results about Selmer groups
given in [8], [9]. The Selmer group is usually defined by terms of Galois cohomology:

S(ϕ)(E/Q) = Ker
{

H1(Q, E[ ϕ ]) →
∏

H1(Qp, E)[ϕ ]
}

,

however, we give simpler definition later.
Let E be an elliptic curve with a rational 2-torsion, that is a curve defined by

y2 = x3 + Ax2 + Bx,

where A,B are integers, and the discriminant 16B2(A2 − 4B) is not zero. The
point (0, 0) on this curve is a rational 2-torsion. It is difficult to compute the rank
of this elliptic curve, however, Selmer groups are computable. Selmer groups give
an upper bound of the rank by

(1) rankE(Q) ≤ dimF2 S(ϕ)(E/Q) + dimF2 S(ϕ′)(E′/Q) − 2,

where E′ is the curve defined by

y2 = x3 − 2Ax2 + (A2 − 4B)x,

and ϕ, ϕ′ are isogenies of degree 2 such that ϕ′ ◦ ϕ and ϕ ◦ ϕ′ are the duplication
maps. The 2-descent method means computing the Selmer groups S(ϕ)(E/Q) and
S(ϕ′)(E′/Q). The right hand side of (1) is often called Selmer rank. If the Selmer
rank is zero, then so is the rank.

Let δ′ : E(Q) → Q×/Q×2 be the following map:

δ′(P ) =





x, if P = (x, y) 6= (0, 0),O,
B, if P = (0, 0),
1, if P = O
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We call δ′ the connecting homomorphism. We define another homomorphism δ :
E′(Q) → Q×/Q×2 similarly. Then the rank is given by the formula:

(2) rankE(Q) = dimF2 Im(δ) + dimF2 Im(δ′) − 2.

Let p be a prime or the infinity. We define δ′p : E(Qp) → Q×
p /Q×2

p and δp :
E′(Qp) → Q×

p /Q×2
p similarly. These are also called connecting homomorphisms.

By the canonical map Q×/Q×2 → Q×
p /Q×2

p , the images Im(δ′p), Im(δp) can be
regarded as the subgroups of Q×/Q×2. Then the Selmer groups S(ϕ)(E/Q) and
S(ϕ′)(E′/Q) are given by

(3) S(ϕ)(E/Q) =
⋂

p

Im(δp), S(ϕ′)(E′/Q) =
⋂

p

Im(δ′p).

Since Im(δ) ⊂ S(ϕ)(E/Q), Im(δ′) ⊂ S(ϕ′)(E′/Q), the equation (2) yields the in-
equality (1). It is difficult to compute Im(δ), Im(δ′), however, Im(δp), Im(δ′p) are
computable. An early result given in [8], [9], describes the images Im(δp), Im(δ′p)
explicitly. Hence we can easily calculate the Selmer groups by (3).

Now, we recall the result given in [8], [9]. For simplicity, we consider the curve

y2 = x(x − α)(x − β),

where α, β are non-zero distinct rational numbers. Without loss of generality, we
can assume that α, β are integers and gcd(α, β) is squarefree. From the locus E(R),
the images of δ′∞ and δ∞ are clearly given as follows:

• If α > 0 and β > 0, then Im(δ′∞) = R×2/R×2, Im(δ∞) = R×/R×2.
• If α < 0 or β < 0, then Im(δ′∞) = R×/R×2, Im(δ∞) = R×2/R×2.

The discriminant of the curve is

∆ = 16α2β2(α − β)2.

Therefore bad primes are classified into
• odd primes which divide both α and β,
• odd primes which divide either α or β,
• odd primes which divide not α but α − β,
• even prime 2.

Note that the prime 2 may be a good prime since the above discriminant may not
necessarily be minimal at 2. If p is a good prime, then

Im(δ′p) = Z×
p Q×2

p /Q×2
p , Im(δp) = Z×

p Q×2
p /Q×2

p

from a general theory. The early papers [8], [9] gave the images of connecting
homomorphisms in all cases, however, we recall only required cases for the π/3-
congruent number problem. In this paper, ordp(N) = e means that pe | N and
pe+1 - N . We denote by 〈c1, · · · , cn〉 the subgroup of Q×/Q×2 or Q×

p /Q×2
p generated

by c1, · · · , cn.

Lemma 2.1. Suppose that ord2(α) = ord2(β) = 0. Then Im(δ′2) = 〈α, β〉 except
the following three cases.

(1) If ord2(α − β) = 2 and α + β ≡ 14 (mod 16), then Im(δ′2) = Z×
2 Q×2

2 /Q×2
2 .

(2) If ord2(α − β) = 3 and α ≡ 3 (mod 4), then Im(δ′2) = Z×
2 Q×2

2 /Q×2
2 .

(3) If ord2(α − β) = 4 and α ≡ 1 (mod 8), then Im(δ′2) = 〈5〉.
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Lemma 2.2. Suppose that ord2(α) = ord2(β) = 1. Then the following holds.
(1) If ord2(α − β) = 2, then Im(δ′2) = Q×

2 /Q×2
2 .

(2) If ord2(α − β) = 3, then Im(δ′2) = 〈α, 5〉.
(3) If ord2(α − β) ≥ 4, then Im(δ′2) = 〈α〉.

Lemma 2.3. Let p be an odd prime. Suppose that ordp(α) = a ≥ 1 and p 6 |β.
Then the following holds.

(1) If a is even and (−β/p) = −1, then Im(δ′p) = Z×
p Q×2

p /Q×2
p .

(2) In the other case, Im(δ′p) = Q×
p /Q×2

p .

Lemma 2.4. Let p be an odd prime. If ordp(α) ≥ 1, ordp(β) = 1, then Im(δ′p) =
〈α, β〉.

The above lemmas immediately yield the following lemma.

Lemma 2.5. For the curve En,π/3, the images Im(δ′p) are given as follows.

(1) Im(δ′∞) = R×/R×2.

(2) Im(δ′2) =





〈5〉, if n ≡ 5 (mod 8),
Z×

2 Q×2
2 /Q×2

2 , if n ≡ ±1,−5 (mod 8),
〈2, 5〉, if n ≡ 2 (mod 8),
〈−2, 5〉, if n ≡ −2 (mod 8).

(3) Im(δ′3) =
{

〈−3〉, if n ≡ 6 (mod 9),
Q×

3 /Q×2
3 , if n 6≡ 6 (mod 9).

(4) If p 6= 2, 3 and p | n, then

Im(δ′p) =
{

〈n〉, if p ≡ 1 (mod 3),
Q×

p /Q×2
p , if p ≡ −1 (mod 3).

In view of the following fact, if one of the groups Im(δ′p) and Im(δp) is given, the
other group is automatically given (see for example [2]).

Lemma 2.6. Let (∗, ∗)p be the Hilbert symbol. For a subgroup V ⊂ Q×
p /Q×2

p , we
define V ⊥ = {x ∈ Q×

p /Q×2
p | (x, y)p = 1 for all y ∈ V }. Then Im(δp) = Im(δ′p)

⊥.

From Lemmas 2.5, 2.6, we immediately have the following lemma.

Lemma 2.7. For the curve En,π/3, the images Im(δp) are given as follows.

(1) Im(δ′∞) = R×2/R×2.

(2) Im(δ2) =





Z×
2 Q×2

2 /Q×2
2 , if n ≡ 5 (mod 8),

〈5〉, if n ≡ ±1,−5 (mod 8),
〈−1〉, if n ≡ 2 (mod 8),
〈−5〉, if n ≡ −2 (mod 8).

(3) Im(δ3) =
{

〈3〉, if n ≡ 6 (mod 9),
Q×2

2 /Q×2
2 , if n 6≡ 6 (mod 9).

(4) If p 6= 2, 3 and p | n, then

Im(δp) =
{

〈−n〉, if p ≡ 1 (mod 3),
Q×2

2 /Q×2
2 , if p ≡ −1 (mod 3).
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For a squarefree positive integer n = p1 · · · pr, we define

Kn = 〈−1, 2, 3, p1, · · · , pr〉 ⊂ Q×/Q×2.

It is well-known that S(ϕ)(En,π/3/Q) ⊂ Kn and S(ϕ′)(E′
n,π/3/Q) ⊂ Kn. An element

d ∈ Kn belongs to S(ϕ)(En,π/3/Q) if and only if d ∈ Im(δp) for all p. Lemmas 2.5,
2.7 are simplified as follows.

Lemma 2.8. Suppose that d ∈ Kn. For the curve En,π/3, we have the following.
(1) d ∈ Im(δ′∞).
(2) For 2 | d, d ∈ Im(δ′2) ⇔ 2 | n and d ≡ n (mod 8).
(3) For 2 - d, d 6∈ Im(δ′2) ⇔ n ≡ 5, ±2 (mod 8) and d ≡ 3 (mod 4).
(4) For 3 | d, d 6∈ Im(δ′3) ⇔ n ≡ 6 (mod 9) and (d/3

3 ) = 1.
(5) For 3 - d, d 6∈ Im(δ′3) ⇔ n ≡ 6 (mod 9) and (d

3 ) = −1.
(6) For p | d, d 6∈ Im(δ′p) ⇔ p ≡ 1 (mod 3) and (n/d

p ) = −1.
(7) For p - d, d 6∈ Im(δ′p) ⇔ p ≡ 1 (mod 3) and (d

p ) = −1.

Lemma 2.9. Suppose that d ∈ Kn. For the curve En,π/3, we have the following.
(1) d ∈ Im(δ∞) ⇔ d > 0.
(2) If 2 | d, then d 6∈ Im(δ2).
(3) For 2 - d, d ∈ Im(δ2) if and only if one of the following conditions holds.

(a) n ≡ 5 (mod 8).
(b) n ≡ ±1,−5 (mod 8) and (−1

d ) = 1.
(c) n ≡ 2 (mod 8) and ( 2

d ) = 1.
(d) n ≡ −2 (mod 8) and (−2

d ) = 1.
(4) For 3 | d, d ∈ Im(δ3) ⇔ n ≡ 6 (mod 9) and (d/3

3 ) = 1.
(5) For 3 - d, d ∈ Im(δp) ⇔ (d

3 ) = 1.
(6) For p | d, d ∈ Im(δp) ⇔ p ≡ 1 (mod 3) and (−n/d

p ) = 1.
(7) For p - d, d ∈ Im(δp) ⇔ (d

p ) = 1.

3. Odd graphs

In this section, we recall the definition of odd graphs and recall some result due
to Feng and Xiong [5].

Let V and E be finite sets, and consider a map ψ : E → V × V . We call the
pair (V,E, ψ) a directed graph. For example, the graph G = (V, E, ψ) given by
V = {v1, v2}, E = {e1, e2, e3}, ψ(e1) = (v1, v1), ψ(e2) = (v1, v2), ψ(e3) = (v1, v2)
is regarded as the following diagram:

v1

)
e1

v2

-
e2

6

e3

A graph G = (V, E, ψ) is called simple if the following conditions hold.
• For any e ∈ E, ψ(e) 6∈ diag(V ) := {(v, v) | v ∈ V }.
• The map ψ is injective.
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From now on, we only consider simple directed graphs, and identify ψ(E) with E.
We denote by −→vw an element (v, w) ∈ E, and by vw two elements (v, w), (w, v) ∈ E.
If the condition

(v, w) ∈ E(G) ⇒ (w, v) ∈ E(G)
holds, then we call G a nondirected graph. For example, if V (G) = {v1, v2, v3},
E(G) = {v1v2, v2v3} = {(v1, v2), (v2, v1), (v2, v3), (v3, v2)}, then the graph G is
regarded as the following diagram.

v1 v2 v3

Definition. Let G = (V, E) be a simple directed graph.
• If V1 ∪ V2 = V and V1 ∩ V2 = φ, then we call {V1, V2} a partition of V .
• A partition {V1, V2} is said to be trivial if V1 = φ or V2 = φ.
• A partition {V1, V2} is called odd if there exists v ∈ V1 such that #{v → V2}

is odd, or there exists v ∈ V2 such that #{v → V1} is odd.
• Otherwise, {V1, V2} is called even.
• The graph G is called odd if any nontrivial partition is odd.
• Otherwise, G is called even.
• We call G a semi-odd graph if there exists only one nontrivial even parti-

tion.

Clearly, a non-connected graph is even. For example, the following graphs are
odd (cf. [5]).

• A directed cycle: V = {v1, · · · , vm}, E = {−−→v1v2,
−−→v2v3, · · · ,−−−−−→vm−1vm,−−−→vmv1}.

• A non-directed cycle with |V | odd:
V = {v1, · · · , vm}, E = {v1v2, v2v3, · · · , vm−1vm, vmv1}.

• A complete graph with |V | odd.
• A tree.

odd

even partition

even

Figure 1: Non-directed cycles.

Oddness of graphs can be translated into terms of linear algebra. Let G be a
directed graph with V (G) = {v1, · · · , vm} and A(G) the adjacency matrix of G
defined by A(G) = (aij)1≤i,j≤m, where

aij =
{

1, if −−→vivj ∈ E(G),
0, otherwise.

Furthermore, let di be the outdegree of the vertex vi, namely

di =
m∑

j=1

aij .

The Laplace matrix L(G) is defined by

L(G) = diag(d1, · · · , dm) − A(G).
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By the definition, the sum of each row of L(G) is zero, hence rankZ(L(G)) ≤ m−1.

Proposition 3.1 ([4], [5]). Let G be a directed graph, m = |V (G)| and r =
rankF2 L(G). Then the number of even partitions of V (G) is 2m−r−1. In par-
ticular, G is odd if and only if r = m − 1. Furthermore, G is semi-odd if and only
if r = m − 2.

Feng and Xiong [5] noted one more interesting fact. Suppose that G is non-
directed graph. A subgraph H of G is called a spanning tree if H is a tree and
V (G) = V (H). The above proposition and the Kirchhoff theorem (see [10, §1.2.4])
immediately yield the following.

Proposition 3.2 ([5]). Suppose that G is non-directed graph. Then G is odd if
and only if the number of spanning trees of G is odd.

For example, the non-directed cycle G with |V (G)| = 4 is even, therefore the
number of spanning trees is even.

Figure 2: Spanning trees.

Now, we recall one of the results given in [5].

Definition. For an odd integer n = p1 · · · pt, we define the directed graph G(n) by

V (G(n)) = {p1, · · · , pt}, E(G(n)) =
{
−−→pipj

∣∣∣∣
(

pj

pi

)
= −1 (1 ≤ i 6= j ≤ t)

}
.

Theorem 3.3 ([5]). Suppose that n ≡ 3 (mod 8) and n = p1 · · · pt. The Selmer
rank of En is zero if and only if the following two conditions hold.

(1) p1 ≡ 3 (mod 4) and pi ≡ 1 (mod 4) for i ≥ 2.
(2) G(n) is odd.

Remark. The Selmer rank of En is even if and only if n ≡ 1, 2 or 3 (mod 8)
(see [1], [16]). Feng and Xiong [5] proved similar facts for the cases that n ≡ 1 and
2 (mod 8).

4. Main results

In this section, we prove a π/3-analogy of Theorem 3.3.

Definition. For an odd integer n = p1 · · · pt, we define the directed graphs
g(n), g′(n) by

V (g(n)) = {−1, p1, · · · , pt},

E(g(n)) =
{
−−→pipj

∣∣∣∣
(

pj

pi

)
= −1 (1 ≤ i 6= j ≤ t)

}

∪
{

pi(−1)
∣∣∣∣

(
−1
pi

)
= −1 (1 ≤ i ≤ t)

}
,
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V (g′(n)) = {−1, (−1)′, p1, · · · , pt},

E(g′(n)) =
{
−−→pipj

∣∣∣∣
(

pj

pi

)
= −1 (1 ≤ i 6= j ≤ t)

}

∪
{−−−−→

pi(−1)
∣∣∣∣

(
−1
pi

)
= −1 (1 ≤ i ≤ t)

}

∪
{−−−−→

pi(−1)′
∣∣∣∣

(
−1
pi

)
= −1 (1 ≤ i ≤ t)

}
.

Note that the partition V1 = {−1, (−1)′}, V2 = V (g′(n))\V1 of V (g′(n)) is always
even.

Theorem 4.1. Suppose that n ≡ 1, 7 or 19 (mod 24). The Selmer rank of En,π/3

is zero if and only if the following three conditions hold.
(1) ∀p | n, p ≡ 1 (mod 3).
(2) g(n) is odd.
(3) g′(n) is semi-odd.

Remark. The Selmer rank of En,π/3 is even if and only if

n ≡ 1, 2, 3, 5, 7, 9, 14, 15 or 19 (mod 24).

We see this fact by investigating the “root number”, namely the sign which appears
in the functional equation of the Hasse-Weil L-function of En,π/3 (cf. [14], [16], [21]).
We can have similar facts for the cases that n ≡ 2, 3, 5, 9, 14 and 15 (mod 24) by
using Lemmas 2.8, 2.9

For simplicity, we denote by Sn (resp. S′
n) the Selmer group S(ϕ)(En,π/3/Q)

(resp. S(ϕ′)(E′
n,π/3/Q)). Then the Selmer rank of En,π/3 is dimF2 Sn+dimF2 S′

n−2.
It is clear that {1, n,−3n,−3} ⊂ S′

n.

Definition. For an odd integer n = p1 · · · ptq1 · · · qs with pi ≡ 1 (mod 3), qj ≡ −1
(mod 3), we define the directed graphs h′(n) by

V (h′(n)) = {−1, (−1)′, p1, · · · , pt, q1, · · · , qs},

E(h′(n)) =
{
−−→pipj

∣∣∣∣
(

pj

pi

)
= −1 (1 ≤ i 6= j ≤ t)

}

∪
{
−−→piqj

∣∣∣∣
(

qj

pi

)
= −1 (1 ≤ i ≤ t, 1 ≤ j ≤ s)

}

∪
{−−−−→

pi(−1)
∣∣∣∣

(
−1
pi

)
= −1 (1 ≤ i ≤ t)

}

∪
{−−−−→

pi(−1)′
∣∣∣∣

(
−1
pi

)
= −1 (1 ≤ i ≤ t)

}
.

Lemma 4.2. Suppose that n ≡ 1, 7 or 19 (mod 24). Then S′
n = {1, n,−3n,−3} if

and only if the graph h′(n) is semi-odd.

Proof. Suppose that h′(n) is semi-odd. Then any partition {V1, V2} of V (h′(n))
with V1, V2 6= φ, {−1, (−1)′} is odd. Put d =

∏
V1. Note that d 6= 1, n. Since the

partition is odd, we have
8



• there exist pi ∈ V1 such that #{pi → V2} is odd, hence (n/d
p ) = −1,

or
• there exist pi ∈ V2 such that #{pi → V1} is odd, hence (d

p ) = −1.
In both cases, d 6∈ Im(δ′p) from Lemma 2.8 (6),(7). We have proved that any
d ∈ 〈−1, p1, · · · , pt, q1, · · · , qs〉 does not belong to S′

n. From Lemma 2.8 (2) and the
fact −3 ∈ S′

n, we have S′
n = {1, n,−3n,−3}.

Suppose that the graph h′(n) is not semi-odd. Then there is an even partition
{V1, V2} of V (h′(n)) with V1, V2 6= φ, {−1, (−1)′}. Put d =

∏
V1. Note that

d 6= 1, n. From Lemma 2.8 (1),(3),(5),(6),(7), we have d ∈ Im(δ′∞), Im(δ′2), Im(δ′3),
Im(δ′qj

). Since the partition is even, we have

• for any pi ∈ V1, #{pi → V2} is even, hence (n/d
p ) = 1,

and
• for any pi ∈ V2, #{pi → V1} is even, hence (d

p ) = 1.
Therefore, d ∈ Im(δ′pi

), and it follows that d ∈ S′
n. ¤

In fact, we have proved the following fact:

rankF2 S′
n = t + s + 2 − rankF2 L(h′(n)).

If s ≥ 2, then at least 4 rows of L(h′(n)) are zero, hence the Selmer rank is positive.
If s = 1, then n ≡ 2 (mod 3), a contradiction. Therefore, we need consider only the
case of s = 0. In this case, we have h′(n) = g′(n), so we have proven the following.

Lemma 4.3. Suppose that n ≡ 1, 7 or 19 (mod 24) and S′
n = {1, n,−3n,−3}.

Then all prime divisors p of n satisfy p ≡ 1 (mod 3), and the graph g′(n) is semi-
odd.

In order to prove Theorem 4.1, we need one more lemma.

Lemma 4.4. Suppose that n ≡ 1, 7 or 19 (mod 24) and n = p1 · · · pt with pi ≡ 1
(mod 3). Then Sn = {1} if and only if the graph g(n) is odd.

Proof. From Lemma 2.9 (1),(2),(4), it follows that Sn ⊂ 〈p1, · · · , pt〉.
Suppose that g(n) is odd. Then any nontrivial partition {V1, V2} of V (g(n))

is odd. Without loss of generality, we may assume that −1 6∈ V1, −1 ∈ V2. Put
d =

∏
V1. Note that d 6= 1. Since the partition is odd, we have

• there exist pi ∈ V1 such that #{pi → V2} is odd, hence (−n/d
p ) = −1,

• there exist pi ∈ V2 such that #{pi → V1} is odd, hence (d
p ) = −1,

or
• #{−1 → V1} is odd, hence (−1

d ) = −1.
From Lemma 2.9 (3),(6),(7), d 6∈ Im(δp) or d 6∈ Im(δ2). In both cases, we have
d 6∈ Sn.

Suppose that g(n) is even. Then there exists a nontrivial even partition {V1, V2}
of V (g(n)). Without loss of generality, we may assume that −1 6∈ V1, −1 ∈ V2. Put
d =

∏
V1. Note that d 6= 1. From Lemma 2.9 (1), d ∈ Im(δ∞). Since the partition

is even, we have d ∈ Im(δ2), Im(δpi) for any i, from the similar argument. Since
pi ≡ 1 (mod 3), we have d ≡ 1 (mod 3) and d ∈ Im(δ3). Hence d ∈ Sn. ¤

Lemmas 4.3, 4.4 immediately yield Theorem 4.1.
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