ASYMMETRIES ON CUT-AND-PROJECT SETS AND RELATED
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ABSTRACT. In order to characterize the (a)symmetries of cut-and-project sets,
we prove the following: Given a cut-and-project set with the two projections
being injective on the lattice. Then it is fixed by an affine endofunction if
and only if (1) the window restricted on the projection of the lattice is fixed
by another affine endofunction, and (2) both affine endofunctions induce the
same endofunction on the lattice via the two projections. By this theorem, we
prove that any Thurston-Akiyama tilings are asymmetric with respect to any
affine functions.

1. INTRODUCTION

Materials discovered by Shechtmann et al. in 1984, unlike ordinary crystals that
used to be, were aperiodic and had unusual rotation symmetries. Those materials
are now called quasicrystals. For the arrangements of atoms in quasicrystals, many
mathematical idealizations have been proposed. Among them, we are concerned
with cut-and-project sets, introduced by de Brujin [4, 5] to discuss the aperiodicity
of Penrose tilings. In this paper, we characterize the affine functions that fix a
given cut-and-project set, by which we prove that no affine function fixes Thurston-
Akiyama tilings. To state our Main Theorem, we recall basic definitions:

Definition 1.1 (Lattice). By a lattice of a real vector space R", we mean AZ" for
some A € GL,(R).

Following Moody [12], we define a cut-and-project scheme as follows:

Definition 1.2. A cut-and-project scheme consists of two components: a direct
product R% x R% of real vector spaces, and a lattice D in R?" x R%> such that, for
the canonical projections IT; : R* x R% — R% and IT, : R x R% — R,

1. I, is injective on D, and

2. II,][D] is dense in R?2.
We simply denote the cut-and-project scheme by (R? x R, D). We write D; :=
IL;[D] (i = 1,2). R% is often called the physical space and R? the internal space.
We call D the generating lattice.

Definition 1.3 (Window). We say a subset (2 of the internal space R% is a window
if Q is a relatively compact set with non-empty interior.

Definition 1.4. A subset C of R% is called a cut-and-project set if there is a
cut-and-project scheme (R? x R, D) and a window  of R?2 such that

C={I(z):zeD,I(z)€Q}. (1)
We simply denote it by CP(D, ).
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The cut-and-project sets are instances of what Y. Meyer [11] had already intro-
duced under the name of “model sets”, and model sets are instances of relatively
dense harmonious sets (now called Meyer sets), which he introduced as sampling
points of the Fourier series of aperiodic functions. Cut-and-project sets and Meyer
sets are studied intensively from various points of view (see Moody [13] for mathe-
matical point of view).

We are motivated by the followings works on symmetries of cut-and-project sets:

e K. Niizeki [14, 15, 16, 17] constructed a 2D cut-and-project set from n-th
primitive roots of 1, for each n = 5, 8, 10, 12 (that is, the value of the Euler
function of n is 4). He called them /D n-gonal quasilattices. He discussed
the associated 2D tilings (we call them Niizeki tilings), the self-similarity and
inflation symmetries.

e P. A. B. Pleasants [20] studied sufficient conditions on the lattice, projections
and window in the cut-and-project construction for various properties of re-
sulting cut-and-project set, such as uniformity, diffraction, Ammann bars,
symmetries, inflation and local rules. But it seems that he did not discussed
necessary conditions for various symmetries of the cut-and-project sets. He
also constructed cut-and-project sets from modules over algebraic number
fields.

In this paper, we show that the symmetries (periodicities, rotation symmetries
and inflation symmetries) of cut-and-project sets correspond to the symmetries of
the windows. To be precise, our Main Theorem states the following:

Given a cut-and-project set with the two projections being injective on
the lattice. Then it is fixed by an affine endofunction if and only if
1. the window restricted on the projection of the lattice is fixed by
another affine endofunction, and
2. both affine endofunctions induce the same endofunction on the lat-
tice via the projections.

The assumption of the theorem is satisfied by n-gonal quasilattices. Thus we can
prove that an affine function that fixes an n-gonal quasilattice is exactly a rotation
around the origin of angle 27k /n for some k, and can characterize inflation sym-
metries of the n-gonal quasilattices. Since the n-gonal quasilattices are the vertex
sets of Niizeki tilings (see figure 1), we can derive the aperiodicity of the Niizeki
tilings.

Our theorem also establishes that any Thurston-Akiyama tilings are asymmetric
with respect to any affine functions. They were introduced in W. P. Thurston [22].
He suggested a construction of Thurston-Akiyama tilings from Pisot numbers. Here
a Pisot number is, by definition, an algebraic integer greater than 1 where every
conjugate other than itself has modulus strictly less than 1. Akiyama [1, 2] was
concerned with a property (W) introduced by Hollander [8], and proved that ev-
ery Pisot number § with the property (W) yields indeed a tiling by Thurston’s
construction.

Unlike Niizeki tilings, it is not simple to prove that the Thurston-Akiyama tilings
are asymmetric with respect to any affine function. It is because the fractal bound-
aries of the tiles make it difficult to comprehend the (a)symmetries of the tiles (see
figure 2). Given a Thurston-Akiyama tiling, from each tile we choose a point that
plays central role in the construction of the tiling. We call the resulting set the
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F1GurE 1. Niizeki aperiodic tilings: (a) 5-fold, (b) 8-fold, (c) 10-
fold non-Bravais type, and (d) 12-fold. The pictures are courtesy
of Prof. Komajiro Niizeki.

characteristic point set of the Thurston-Akiyama tiling. We show that any charac-
teristic point sets become cut-and-project sets. Then by applying our theorem, we
finally establish the asymmetries of the tiling.

The paper is organized as follows: In the next section, the basic properties of cut-
and-project sets and Main Theorem, which characterizes the (a)symmetries of cut-
and-project sets, are presented. Section 3 is preparation to discuss the asymmetries
of vertex sets of Niizeki tilings and characteristic point sets of Thurston-Akiyama
tilings. We go into details on algebraically constructed cut-and-project schemes.
We give two examples of applications of our Main Theorem. First, we discuss the
asymmetries of Niizeki tilings with our framework, in Section 4. Second, we prove
the asymmetries of Thurston-Akiyama tilings, in Section 5. The definition of the
tilings is given in Section 5.1.

2. ASYMMETRIES OF CUT-AND-PROJECT SETS

Let B, (x,r) be the open ball of radius r > 0 centered around x in R”.

Definition 2.1. A set C in R" is called a Delaunay set, if it has the following two
properties:
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F1c¢URE 2. Thurston-Akiyama tilings by Pisot numbers whose ir-
reducible polynomials are (a) * — 2 — 1 (minimal Pisot number),
(b) 3 — 2> — 2 — 1 (Rauzy fractal) (c) 2* — 32? + 22 — 1, and

(d) #* — 32 + 1. They have fractal boundaries.

1. Uniformly discrete: There exists a distance r > 0 such that for all x € R,
B, (x,r) contains at most one point of C.

2. Relatively dense: There exists a distance R > 0 such that for all x € R,
B, (x, R) contains at least one point of C.

This concept is named after B. N. Delone (alternative spelling: B. N. Delaunay).

For subsets X and Y of a real vector space, put X+Y ={z+y:z € X,y e Y}
and X - Y ={xz-y:zeX, yeY}. ForyeY, X+y={xz+y:x € X} and
X-y={zxz-y:zeX}

We recall characterizations of Meyer sets [11].

Proposition 2.2 (Meyer [11]). For any A CR™, the followings are equivalent:

1. A is a Delaunay set such that A C C + F for some cut-and-project set C' and
some finite set F.

2. A is a Delaunay set such that A — A C A+ F for some finite set F (This is
the definition of a Meyer set).

3. A and A — A are Delaunay sets. This characterization is due to Lagarias [9].

As a corollary, the following holds:
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Proposition 2.3. FEvery cut-and-project set is a Meyer set.

Given a cut-and-project scheme (R?" x R?2 D). Because II,|p : D — D; is an
injection, we can define the natural homomorphism b from D; to D, as follows:

b=1Iy0 (II|p)"" : Dy — Ds. (2)

For u € Dy and U C Dy, v’ and U’ stand for b(u) and >[U].

For a subset X of a real vector space, Inn(X) and Cl(X) stand for the interior
and the closure of X, and (X) stands for the Abelian subgroup generated by X.
For z of a real vector space, the norm is denoted by ||z||.

Theorem 2.4. Suppose a cut-and-project set C is defined by a cut-and-project
scheme (RY x R, D) and a window Q such that the canonical projection IT, :
R¥ x R% — R% s injective on D. Then (C — C) = D;.

Our Main Theorem states the following:

Given a cut-and-project set with the two canonical projections being
injective on the lattice. Then it is fixed by an affine endofunction if and
only if
1. The window restricted on the projection of the lattice is fixed by
another affine endofunction, and
2. both affine endofunctions induce the same endofunction on the lat-
tice via the two projections.

To be more precise, Main Theorem states the following:

Theorem 2.5 (Main). Let C be a cut-and-project set defined by a cut-and-project
scheme (R x R% | D) such that the canonical projection IT, : RY1 x Rz — Rz js
injective on D.
Given any affine function f; : R — R, Then
1. The followings are equivalent
(a) Fi[C]=C.
(b) fi[D1] C Di, and there exists an affine function fo : R® — R which
satisfies
(i) f2[D2] C Do,
(ii) o filp, = falp, 0¥,
(iii) fo[2N Dy] = QN Ds.
2. The first assertion still holds even if we replace the two occurrences of = in
(1a) and (1(b)iii) with C.

3. ALGEBRAICALLY CONSTRUCTED CUT-AND-PROJECT SCHEMES

The assumption of Main Theorem (Theorem 2.5) are satisfied by algebraically
constructed cut-and-project schemes, which we here introduce. These schemes have
reasonably important examples:

e the n-gonal quasilattices, the vertex sets of Niizeki tilings,

e the “characteristic point set” derived from Thurston-Akiyama tilings.

In later sections, we show the asymmetries of Niizeki tilings and Thurston-Akiyama
tilings.

Definition 3.1 (Algebraically Constructed Cut-and-Project Scheme). First we
give data for the generating lattice D of an algebraically constructed cut-and-project
scheme.
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physical space | internal space
dimension dy do
number of related real conjugates r T
number of related non-real conjugates 251 259

TABLE 1. Data for projections of algebraically constructed cut-
and-project scheme.

Let K be an algebraic number field, d = [K : Q]. Put d = r + 2s. Let 01,09,

, 0 be the associated (rembeddings from K to R and 0,41, ..., 0,425 be the
associated Q-embeddings from K to C where o,49,(2) = 0p19i 1(2) for 1 <i < s.
Let wy, ..., wq be a basis for K/Q. Let V be a matrix:

V= (”i(‘*’.i))gi,jgd :

If s > 0, then some element in VZ% can have non-real components in the last 2s
lines. So, as a generating lattice D of R?, we instead consider

D=QxVZ- (3)
Here the matrix () x is defined by
Qx =E. & P Yx, (4)
1<i<s

where E,. is the identity matrix of size r, Yx = XYp,, X € GLy(R) and

e )

For matrixes M and N, M & N is the matrix of the form <]g 2) .

Second, we give data for projections of the cut-and-project scheme (see also
Table 1).

dy is the dimension of the physical space.

ds is the dimension of the internal space.

r1 is the number of the real conjugates related to the physical space.

s1 is the half of the number of the non-real conjugates related to the physical

space. Thus d; = ry + 2s;.

ro is the number of the real conjugates related to the internal space.

e s5 is the half of the number of the non-real conjugates related to the internal
space. Thus dy = ry + 2s5.

e Thusr =r; +r9 and s = s1 + $».

e The projection to the physical space is represented as the d; x d matrix

H] _ ET] 07‘1 T2 07‘1 1251 OT1 PED) (5)
0231 71 0231 , T2 E231 0231 ,289

e The projection to the internal space is represented as ds X d matrix

1> = 07‘277‘1 ETQ Or27231 07‘27252 6
>~ \o 0 0] E ' (©6)
259,71 259,79 259,281 2589

Then we state the following:
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Theorem 3.2. Fori =1, 2, let II; be a projection from R? to R which is defined
above. Then,

1. Each II; is injective on D, and

2. D; is dense in R% .

Thus every algebraically constructed cut-and-project scheme (R xR | D) is indeed
a cut-and-project scheme.

It is convenient to employ dual basis (Lang [10, Corollary 1, Chapter VIII, Sec-
tion 5]).

Proposition 3.3 (Dual Basis). Let wy, ..., wq be a basis for K/Q. Then there
exists the dual basis wy, ... ,wj of K/Q. It is defined by the properties Tr(w;w}) =
di; with §;; being a Kronecker’s delta. Here the trace Tr is defined for any v € K
by Tr(z) = Z;i:] o;(x). Hence

(V) = (o)), - (7)
4. ASYMMETRY OF n-GONAL QUASILATTICES

Simple examples of algebraically constructed cut-and-project sets are 4D n-gonal
quasilattices (Niizeki [15, 16, 17, 14]). They are the vertex sets of Niizeki tilings.
We discuss the (a)symmetries by Main Theorem (Theorem 2.5). First we recall 4D
n-gonal quasilattices.

Let ¢, be the complex number exp(27y/—1/n) with n = 5, 8, 10 or 12 (i.e.,
¢(n) = 4 where ¢ is the Euler function). Put four Q-isomorphisms o; (i = 1, 2, 3,
4) from Q(¢,) to itself be

01(Cn) = Cny  02(Cn) = ;s 03(Cn) = C;" and  04(Cn) = "
Here i,(# 1, n — 1) is any positive integer with (i,,n) = 1.
Let Q,, be a regular n-gon in the Gauss plane with the center being the origin.
The n-gonal quasilattice is, by definition,

Qn() = {2 € Z[(] : 03(z) € QU }.
The n-gonal quasilattice is an instance of an algebraically constructed cut-and-
project set of Section 3: Set K = Q((,), d = [K : Q] = ¢(n) = 4. See Table 2. A
basis wy, ..., wg is

1 G G G
X = E5/\/2. Then the generating lattice D will be the following:
1 RG RC; R
0 S 3¢ 3¢

L, = VAS

1 R(03(Ca)) R(o3(G)) R(o3(C))
0 S(o3(Cn) Slos(G)) S(os(E))
By identifying C with R*, Dy becomes Z[(,], D> becomes 03(Z[(,]) = Zo3((a)],
D becomes Z[(,] x Z [ag(Cn)], and b : D; — Dy becomes o3.

By applying Theorem 3.2, we have the following:

Theorem 4.1. Let n be 5, 8, 10 or 12. Then (R x R%,L,,) is an algebraically
constructed cut-and-project scheme (see Table 2) where the projections I and II,
are defined by

IIy =(Ey O23), IIy = (025 Es) € Maya(R).
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physical space | internal space
dimension dy =2 dy =2
number of related real conjugates ry =0 ry =0
number of related non-real conjugates 281 = 2 289 = 2

TABLE 2. Data for projections of the cut-and-project scheme of
n-gonal quasilattices (n = 5, 8, 10, 12).

Let Q,, C R2? be a regqular n-gon with the center being the origin. Then CP(L,, Q)
is Qn () by identifying C with R2.

By our Main Theorem, the rotation symmetries and the inflation symmetries of
the n-gonal quasilattices are characterized as follows:

Corollary 4.2. Letn be 5, 8, 10 or 12.

1. An affine function fi fizes Qn(Qn), if and only if fi represents the rotation
around the origin of angle 2nk/n for some k=1, ... /n.

2. Let n be greater than 1. Then, n is an inflation symmetry of Q. () if and
only if n € Z[2cos(2w/n)| and |n*| < 1 hold. Here n* means the algebraic

conjugate of n defined by (2 cos(27r/n))* = 2cos(2i,7/n).

The aperiodicities of a Penrose tiling was originally proved by Penrose with the
argument of the inflation symmetries and the density of the prototiles [19].
Next Remark gives us some relation between algebras and our Main Theorem.

Remark 4.3. The subset version of Main Theorem (Theorem 2.5) is relevant to
an infinite dimensional Lie algebra introduced by Fairie and Zachos [6]. Their Lie
algebra is generated from { JLleN, ue Qn(f,) } and the relation

JLam =gt it u ol € Qa ().

u“v u+vql

A simple realization is J., = exp(uexp(z)) (=

By defining f! : C — C as f.(2) = u + 2¢', the proviso “u + v¢’, € Q,(2,)” is
rephrased as f!(v) € Qn(Qy). The condition equivalent to f.[Q,(2,)] C Qn(Qy)
is given in our Main Theorem.

5. ASYMMETRY OF THURSTON-AKIYAMA TILINGS

Thurston introduced tilings based on real number representations with the radixes
being Pisot numbers, and studied them with finite state automata [22]. Further, in
Akiyama [1, 2], he gave an algebraic characterization of Pisot numbers which yield
tilings, and studied the tilings comprehensively. We will establish their tilings are
not symmetric with respect to any affine transformations.

In the first Subsection, we recall Thurston-Akiyama tilings are constructed al-
gebraically from Pisot numbers 3. For each Thurston-Akiyama tiling, each tile is
labeled by Parry’s B-expansion. Our key proof idea of asymmetry of the tilings is
to assign to each tile a unique point based on the tile’s label. We call such point
the characteristic point of the tile. In Subsection 5.2, to prove the asymmetry of
the tiling easy, we will be concerned with an equivalence class P of tiles by the
translation. We will prove that P corresponds to an asymmetric interval. In Sub-
section 5.3, we will be concerned with the set ¢3[P] of characteristic points of tiles
in P. We will prove that ¢g[P] is an algebraically constructed cut-and-project set.
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The physical space and the internal space are related to each other by the conju-
gate map of the Pisot number (3, and the window is the asymmetric interval from
which the asymmetries of ¢g[P] will follow through our Main Theorem. Then we
will establish the asymmetries of the Thurston-Akiyama tilings.

Below 3 is a real number greater than 1.

5.1. Thurston-Akiyama Tilings. We first recall real number representations
with non-integral radixes, and (-expansions of W. Parry [18]. Let 8 > 1 be a
real number and Ag :=Z N[0, 3). We can represent any real z > 0 in base :

r = Z a_ i = amag.a 10 9 (GG, € Ag). (8)

i=—m

In this case we write

2= pg(am - ag.a_ra_y---)

The sequence a,, ...aq is called the integer part and a_ja_o--- the fraction
part. The representation (8) is called finite when it ends with the right-infinite
repetition 0“ of 0 (it is often omitted), and is called a 3-expansion when it satisfies
the following greedy condition: |a: - . aiB7H < B for all n > —m.

Let Fin(f3) be the set of non-negative reals which has a finite S-expansion. Fr
denotes the set of all fraction parts of Z[(]>0:

Fr:= {w: .w is the f-expansion of some z € Z[#]>¢} .

The (B-expansion of 1, denoted by d(1,[3), is, by definition, a sequence tits - - -
where t1, ta,... € Ag and rg := 1, t; :== |fri_1] and r; := {fr;_1} for all i > 1.
Here for a given x > 0, |z] is the greatest integer lesser than or equal to z, and
{z} is x — |z|. The concatenation of sequences p and ¢ is denoted by pq. Define

d*(1,8) by

d*(1,5) = {

d(1,8) if d(1,3) is an infinite sequence,

Here (t1---tn—1(t, — 1)) is the right-infinite repetition of the finite sequence
t1---tp_1(t, —1). According to Schmidt [21], for every Pisot number g, d*(1, ) is

eventually periodic. That is, the following holds:

Proposition 5.1. If 3 is a Pisot number, then d*(1,58) = t1 - tn(tnt1 - tngp)®
for somen +p>1 and some ty, ..., t,yp € Ag.

For two infinite sequences p = p1ps--- and ¢ = q1q2 - - -, we write p <jex ¢, if
there exists some i > 1 such that for all & < i, pr = qr and p; < ¢;. The lexi-
cographical order between (-expansions characterizes the numerical order between
them:

Proposition 5.2. For all 3-expansions .w and .7, we have w <iex 1 if and only if
pe(.w) < pa(.n)-
A bi-infinite sequence - --a_sa_japaias - -- (a; € Ag) is called 3-admissible if
;i1 <lex d*(]., ﬂ) (V?)

Define the -admissibility of an infinite sequence similarly. Below we will implicitly
use W. Parry’s result [18]:
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Proposition 5.3. The representation (8) is [B-expansion if and only if it is (-
admissible.

Definition 5.4. 1. Let 8 > 1 be a Pisot unit, that is, an algebraic unit which
is a Pisot number.

2. Let K = Q(B8) be an algebraic number field, d = [K : Q]. As a basis for

K/Q, choose 1, 3,..., 3% " Putd = r +2s. Let 01,09, ..., 0, be the
associated Q-embedding from K to R and 0,41, ..., 0,425 be the associated
Q-embedding from K to C where 0,.42;(2) = 0,42;—1(2) for 1 <i < s. Let
o, = id.

3. For every a € Z[3], put

(I)((I) = t(”l ((I), RS (Trfl(a)a §Ra’r%—l ((l), S}(7-1"+1(a)7 ERE §R(7-1"+s(a‘)7 S(7'1‘%-5((]‘)) . (9)

Given a possibly bi-infinite sequence - - - t2t1t9.t_1t_5 - - - with each ¢; being in Ag.
If the point Y, #;®(8’) € R*" is defined, then it is denoted by pg(- - - tito.t_q - ).
For each (-expansion w.w, define the compact set T, C R* by

Ty = CLR[Sy0])-

The compactness of Ty, ., follows from the property of Pisot numbers. We call T, a
tile. There is a linear map G : R? — R% which commutes the following diagram:

xB~K

Q(B) Q(B)

3 o o

R T> Ré

Each tile T, satisfies the following inflation subdivision principle:

Gi(Tw) =T,

where the union runs over all a € Ag such that .aw is a B-expansion.
Assume that 3 has the following property:

(W) :Vz € Z[B Y0, Y& >0, Jy, 2 € Fin(B) such that |z| <cand z =y — 2.

Each d € Z~ has infinitely many such Pisot number 3. Actually, according
to [7], if a polynomial X% — a; X%~ ! — ay X9=2... —a; 1 X — 1 € Z[X] satisfies
a; > as > --- > aq_1 > 1, then it has a zero point 8 > 1 such that 3 is a Pisot
number and (F) : Z>o[3~'] C Fin(3). Then, by [2, Proposition 3], 3 satisfies the
property (W).

Given a tile T, an inner point z of it is called exclusive if x is not in another
tile T.,,.

Remark 5.5. Let vw and 7 be (-admissible. If ﬁﬁ(n.n) € Inn(T, ) then v is a
suffix of 7 and 1 = w.

According to Akiyama [2, Proposition 2],

Proposition 5.6. The property (W) holds if and only if each tile T, has an ex-
clusive inner point.
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Here after we assume 3 satisfies (W) and is a Pisot unit. The set
Tg:={T, :webFr}

provides a self-affine tiling of R, and we call it a Thurston-Akiyama tiling.

5.2. Prototiles. We will be concerned with an equivalence class P of tiles under
the translation. We call it a prototile. Each tile has a S-expansion as the label where
(3 is a Pisot unit that satisfies (W). Because of (W) and Proposition 5.6, by the label
of a tile we can tell which prototile the tile belongs to. Because of Proposition 5.2,
we can prove that the set of 3-expansions of the tiles in P corresponds to a left-
closed-right-open interval.

Definition 5.7. Define an equivalence relation = C T3 x T3 by
T=T < forsomex e RY, T =T + .
We call an element in the factor set Tg/= a prototile.

Definition 5.8. Let 3 be a Pisot unit with the property (W). Then, for d*(1,3) =
tito -+, we have a finite set {#;t;41--- : i > 1} of infinite sequences, because of
Proposition 5.1. Let the set be enumerated as follows

d*(1,8) = P1 >lex P2 Slex *** >lex PN,
For the convenience, we define py41 by 0“. For w € Fr, define
[w] :=min{pg : pp Slexw, N >k>1}
where min is the minimum with respect to the lexicographical order >jqx.

Lemma 5.9 (cf. Akiyama [2, Lemma 5]). For all w and n in Fr,

L. [w] Zlex [7}] — T-w - ﬁ,@('w) g T-n - ﬁﬂ("’)))
2. [w] >iex [7] = vol(T'.,) < vol(T,).

Remark 5.10. Because of Lemma 5.9, the equivalence relation = defined in Defi-
nition 5.7 is actually a congruence relation.

Lemma 5.11. Suppose that w is B-admissible and 1 < k < N. Then

Pt Stex w <= pg(-pr+1) < pp(w).
Combined with Lemma 5.9, we have the following:

Theorem 5.12. For every prototile P € Tg/= there exists k € {1,...,N} such
that P ={T. :w € Fr, pg(.w) € [pa(.pr+1), ps(px)) }.

5.3. Cut-and-Project Set of Characteristic Points. We will prove that the
set cg[P] of characteristic points of tiles each in prototile P is an algebraically
constructed cut-and-project set. The physical space and the internal space are
related to each other by the conjugate map ® of the Pisot number 3. The window is
the left-closed-right-open interval given in Subsection 5.2. The only affine function
that fixes the interval is identity. By our Main Theorem, it is also the case for
the cut-and-project set cg[P]. Because the tiles in the prototile P are of the same
form, we can easily relate to the asymmetries of ¢g[P] to the asymmetry of the
Thurston-Akiyama tiling itself, by using the compactness of the tiles.
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physical space | internal space
dimension di=d—1 dy =1
number of related real conjugates r=r—1 ro =1
number of related non-real conjugates 251 = 2s s9 =0

TABLE 3. Data for projections of the cut-and-project scheme for
characteristic point set of Thurston-Akiyama tilings.

Definition 5.13. For each w € Fr, we call pg(.w) the characteristic point of the
tile T',.

Because of Proposition 5.6, T',, = T, implies .w = .. So we can define an
injection

cg: ‘Iﬁ — ‘}[Z[,@H
such that for each tile T' € Tg, ¢g(T) is the characteristic point of T'.

Lemma 5.14. Following Definition 3.1, data of Definition 5.4(2) give rise to an
algebraic cut-and-project scheme

([Rrh % [R(IQ, QEz/\/iVZd1+d2)
where the projections I, and II, are defined by Table 3. Then we have
D = QEQ/ﬁVZd

1, s N\

®(2]8)) = Dy Dy = Z[f]

bl =9

Theorem 5.15. Let 8 be a Pisot unit that satisfies (W) and deg 8 > 3 following
the notation of Definition 5.4. Let P € Tg/=. Then

1. there exists k =1, ..., N such that the set cg[P] of characteristic points of
the tiles in P is

cp[P] = CP (QEz/\/iVZd= [Pﬁ(-Pk+1)= pp(-pr) ))

where we define py41 := 0%
2. if an affine function fives cg[P] then it is the identity; and
3. ¢3[P] has no inflation symmetry.

Remark 5.16. A (-integer is, by definition, a real number pg(p.) for some -
admissible p . According to [3], the set of all S-integers is a Meyer set if d*(1, ) is
eventually periodic. On the other hand, the “set of all S-fraction”

= {ﬁﬁ(.p) : p is B-admissible and in Z[ﬂ]}

- U CP(QEQ/\/gVZ(ﬂ [ps(pit1), Pﬁ(-pi)))
1<i<N
- cP(QEQ/ﬁVZf’, [0,1))

is a cut-and-project set, which is a Meyer set.

ca[Ts

Here is our Main Result:
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F1GURE 3. The tiling T3 generated by the minimal Pisot number
3, a prototile P € T3/=, and their characteristic point sets.

Theorem 5.17 (Asymmetry of the Thurston-Akiyama Tilings). Let F' : Ries #=1
RI*8 P=1 be an affine function with {F[T] T € ‘Tg} = Tg. Then F' is the identity.

After the authors completed the proof, they are informed by Dr. Sadahiro that
for the Thurston-Akiyama tiling of the minimal Pisot number, the set of points
belonging to three different tiles is a cut-and-project set. So by applying our Main
Theorem to the set, we can directly establish the asymmetry of the Thurston-
Akiyama tiling of the minimal Pisot number.
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