
ASYMMETRIES ON CUT-AND-PROJECT SETS AND RELATEDTILINGS(切断射影集合とそれに関するタイル張りの非対称性)YOHJI AKAMA, YUTAKA AKAZAWA AND SHINJI IIZUKAAbstra
t. In order to 
hara
terize the (a)symmetries of 
ut-and-proje
t sets,we prove the following: Given a 
ut-and-proje
t set with the two proje
tionsbeing inje
tive on the latti
e. Then it is �xed by an aÆne endofun
tion ifand only if (1) the window restri
ted on the proje
tion of the latti
e is �xedby another aÆne endofun
tion, and (2) both aÆne endofun
tions indu
e thesame endofun
tion on the latti
e via the two proje
tions. By this theorem, weprove that any Thurston-Akiyama tilings are asymmetri
 with respe
t to anyaÆne fun
tions. 1. Introdu
tionMaterials dis
overed by She
htmann et al. in 1984, unlike ordinary 
rystals thatused to be, were aperiodi
 and had unusual rotation symmetries. Those materialsare now 
alled quasi
rystals. For the arrangements of atoms in quasi
rystals, manymathemati
al idealizations have been proposed. Among them, we are 
on
ernedwith 
ut-and-proje
t sets, introdu
ed by de Brujin [4, 5℄ to dis
uss the aperiodi
ityof Penrose tilings. In this paper, we 
hara
terize the aÆne fun
tions that �x agiven 
ut-and-proje
t set, by whi
h we prove that no aÆne fun
tion �xes Thurston-Akiyama tilings. To state our Main Theorem, we re
all basi
 de�nitions:De�nition 1.1 (Latti
e). By a latti
e of a real ve
tor spa
e Rn , we mean AZn forsome A 2 GLn(R).Following Moody [12℄, we de�ne a 
ut-and-proje
t s
heme as follows:De�nition 1.2. A 
ut-and-proje
t s
heme 
onsists of two 
omponents: a dire
tprodu
t Rd1 �Rd2 of real ve
tor spa
es, and a latti
e D in Rd1 �Rd2 su
h that, forthe 
anoni
al proje
tions �1 : Rd1 � Rd2 ! Rd1 and �2 : Rd1 � Rd2 ! Rd2 ,1. �1 is inje
tive on D, and2. �2[D℄ is dense in Rd2 .We simply denote the 
ut-and-proje
t s
heme by (Rd1 � Rd2 ; D). We write Di :=�i[D℄ (i = 1; 2). Rd1 is often 
alled the physi
al spa
e and Rd2 the internal spa
e.We 
all D the generating latti
e.De�nition 1.3 (Window). We say a subset 
 of the internal spa
e Rd2 is a windowif 
 is a relatively 
ompa
t set with non-empty interior.De�nition 1.4. A subset C of Rd1 is 
alled a 
ut-and-proje
t set if there is a
ut-and-proje
t s
heme (Rd1 � Rd2 ; D) and a window 
 of Rd2 su
h thatC = ��1(x) : x 2 D; �2(x) 2 
	: (1)We simply denote it by CP(D;
). 1



2 YOHJI AKAMA, YUTAKA AKAZAWA AND SHINJI IIZUKAThe 
ut-and-proje
t sets are instan
es of what Y. Meyer [11℄ had already intro-du
ed under the name of \model sets", and model sets are instan
es of relativelydense harmonious sets (now 
alled Meyer sets), whi
h he introdu
ed as samplingpoints of the Fourier series of aperiodi
 fun
tions. Cut-and-proje
t sets and Meyersets are studied intensively from various points of view (see Moody [13℄ for mathe-mati
al point of view).We are motivated by the followings works on symmetries of 
ut-and-proje
t sets:� K. Niizeki [14, 15, 16, 17℄ 
onstru
ted a 2d 
ut-and-proje
t set from n-thprimitive roots of 1, for ea
h n = 5, 8, 10, 12 (that is, the value of the Eulerfun
tion of n is 4). He 
alled them 4d n-gonal quasilatti
es. He dis
ussedthe asso
iated 2d tilings (we 
all them Niizeki tilings), the self-similarity andin
ation symmetries.� P. A. B. Pleasants [20℄ studied suÆ
ient 
onditions on the latti
e, proje
tionsand window in the 
ut-and-proje
t 
onstru
tion for various properties of re-sulting 
ut-and-proje
t set, su
h as uniformity, di�ra
tion, Ammann bars,symmetries, in
ation and lo
al rules. But it seems that he did not dis
ussedne
essary 
onditions for various symmetries of the 
ut-and-proje
t sets. Healso 
onstru
ted 
ut-and-proje
t sets from modules over algebrai
 number�elds.In this paper, we show that the symmetries (periodi
ities, rotation symmetriesand in
ation symmetries) of 
ut-and-proje
t sets 
orrespond to the symmetries ofthe windows. To be pre
ise, our Main Theorem states the following:Given a 
ut-and-proje
t set with the two proje
tions being inje
tive onthe latti
e. Then it is �xed by an aÆne endofun
tion if and only if1. the window restri
ted on the proje
tion of the latti
e is �xed byanother aÆne endofun
tion, and2. both aÆne endofun
tions indu
e the same endofun
tion on the lat-ti
e via the proje
tions.The assumption of the theorem is satis�ed by n-gonal quasilatti
es. Thus we 
anprove that an aÆne fun
tion that �xes an n-gonal quasilatti
e is exa
tly a rotationaround the origin of angle 2�k=n for some k, and 
an 
hara
terize in
ation sym-metries of the n-gonal quasilatti
es. Sin
e the n-gonal quasilatti
es are the vertexsets of Niizeki tilings (see �gure 1), we 
an derive the aperiodi
ity of the Niizekitilings.Our theorem also establishes that any Thurston-Akiyama tilings are asymmetri
with respe
t to any aÆne fun
tions. They were introdu
ed in W. P. Thurston [22℄.He suggested a 
onstru
tion of Thurston-Akiyama tilings from Pisot numbers. Herea Pisot number is, by de�nition, an algebrai
 integer greater than 1 where every
onjugate other than itself has modulus stri
tly less than 1. Akiyama [1, 2℄ was
on
erned with a property (W) introdu
ed by Hollander [8℄, and proved that ev-ery Pisot number � with the property (W) yields indeed a tiling by Thurston's
onstru
tion.Unlike Niizeki tilings, it is not simple to prove that the Thurston-Akiyama tilingsare asymmetri
 with respe
t to any aÆne fun
tion. It is be
ause the fra
tal bound-aries of the tiles make it diÆ
ult to 
omprehend the (a)symmetries of the tiles (see�gure 2). Given a Thurston-Akiyama tiling, from ea
h tile we 
hoose a point thatplays 
entral role in the 
onstru
tion of the tiling. We 
all the resulting set the
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(a) (b)

(
) (d)Figure 1. Niizeki aperiodi
 tilings: (a) 5-fold, (b) 8-fold, (
) 10-fold non-Bravais type, and (d) 12-fold. The pi
tures are 
ourtesyof Prof. Komajiro Niizeki.
hara
teristi
 point set of the Thurston-Akiyama tiling. We show that any 
hara
-teristi
 point sets be
ome 
ut-and-proje
t sets. Then by applying our theorem, we�nally establish the asymmetries of the tiling.The paper is organized as follows: In the next se
tion, the basi
 properties of 
ut-and-proje
t sets and Main Theorem, whi
h 
hara
terizes the (a)symmetries of 
ut-and-proje
t sets, are presented. Se
tion 3 is preparation to dis
uss the asymmetriesof vertex sets of Niizeki tilings and 
hara
teristi
 point sets of Thurston-Akiyamatilings. We go into details on algebrai
ally 
onstru
ted 
ut-and-proje
t s
hemes.We give two examples of appli
ations of our Main Theorem. First, we dis
uss theasymmetries of Niizeki tilings with our framework, in Se
tion 4. Se
ond, we provethe asymmetries of Thurston-Akiyama tilings, in Se
tion 5. The de�nition of thetilings is given in Se
tion 5.1.2. Asymmetries of Cut-and-Proje
t SetsLet Bn(x; r) be the open ball of radius r > 0 
entered around x in Rn .De�nition 2.1. A set C in Rn is 
alled a Delaunay set, if it has the following twoproperties:
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(a) (b)
(
) (d)Figure 2. Thurston-Akiyama tilings by Pisot numbers whose ir-redu
ible polynomials are (a) x3 � x� 1 (minimal Pisot number),(b) x3 � x2 � x � 1 (Rauzy fra
tal) (
) x3 � 3x2 + 2x � 1, and(d) x3 � 3x2 + 1. They have fra
tal boundaries.1. Uniformly dis
rete: There exists a distan
e r > 0 su
h that for all x 2 Rn ,Bn(x; r) 
ontains at most one point of C.2. Relatively dense: There exists a distan
e R > 0 su
h that for all x 2 Rn ,Bn(x; R) 
ontains at least one point of C.This 
on
ept is named after B. N. Delone (alternative spelling: B. N. Delaunay).For subsets X and Y of a real ve
tor spa
e, put X+Y = fx+y : x 2 X; y 2 Y gand X � Y = fx� y : x 2 X; y 2 Y g. For y 2 Y , X + y = fx+ y : x 2 X g andX � y = fx� y : x 2 X g.We re
all 
hara
terizations of Meyer sets [11℄.Proposition 2.2 (Meyer [11℄). For any � � Rn , the followings are equivalent:1. � is a Delaunay set su
h that � � C +F for some 
ut-and-proje
t set C andsome �nite set F .2. � is a Delaunay set su
h that �� � � � + F for some �nite set F (This isthe de�nition of a Meyer set).3. � and ��� are Delaunay sets. This 
hara
terization is due to Lagarias [9℄.As a 
orollary, the following holds:



ASYMMETRIES ON CUT-AND-PROJECT SETS AND RELATED TILINGS 5Proposition 2.3. Every 
ut-and-proje
t set is a Meyer set.Given a 
ut-and-proje
t s
heme (Rd1 � Rd2 ; D). Be
ause �1jD : D ! D1 is aninje
tion, we 
an de�ne the natural homomorphism [ from D1 to D2 as follows:[ = �2 Æ (�1jD)�1 : D1 ! D2: (2)For u 2 D1 and U � D1, u[ and U [ stand for [(u) and [[U ℄.For a subset X of a real ve
tor spa
e, Inn(X) and Cl(X) stand for the interiorand the 
losure of X , and hXi stands for the Abelian subgroup generated by X .For x of a real ve
tor spa
e, the norm is denoted by kxk.Theorem 2.4. Suppose a 
ut-and-proje
t set C is de�ned by a 
ut-and-proje
ts
heme (Rd1 � Rd2 ; D) and a window 
 su
h that the 
anoni
al proje
tion �2 :Rd1 � Rd2 ! Rd2 is inje
tive on D. Then hC � Ci = D1.Our Main Theorem states the following:Given a 
ut-and-proje
t set with the two 
anoni
al proje
tions beinginje
tive on the latti
e. Then it is �xed by an aÆne endofun
tion if andonly if1. The window restri
ted on the proje
tion of the latti
e is �xed byanother aÆne endofun
tion, and2. both aÆne endofun
tions indu
e the same endofun
tion on the lat-ti
e via the two proje
tions.To be more pre
ise, Main Theorem states the following:Theorem 2.5 (Main). Let C be a 
ut-and-proje
t set de�ned by a 
ut-and-proje
ts
heme (Rd1 �Rd2 ; D) su
h that the 
anoni
al proje
tion �2 : Rd1 �Rd2 ! Rd2 isinje
tive on D.Given any aÆne fun
tion f1 : Rd1 ! Rd1. Then1. The followings are equivalent(a) f1[C℄ = C.(b) f1[D1℄ � D1, and there exists an aÆne fun
tion f2 : Rd2 ! Rd2 whi
hsatis�es(i) f2[D2℄ � D2,(ii) [ Æ f1jD1 = f2jD2 Æ [,(iii) f2[
 \D2℄ = 
 \D2.2. The �rst assertion still holds even if we repla
e the two o

urren
es of = in(1a) and (1(b)iii) with �.3. Algebrai
ally Constru
ted Cut-and-proje
t S
hemesThe assumption of Main Theorem (Theorem 2.5) are satis�ed by algebrai
ally
onstru
ted 
ut-and-proje
t s
hemes, whi
h we here introdu
e. These s
hemes havereasonably important examples:� the n-gonal quasilatti
es, the vertex sets of Niizeki tilings,� the \
hara
teristi
 point set" derived from Thurston-Akiyama tilings.In later se
tions, we show the asymmetries of Niizeki tilings and Thurston-Akiyamatilings.De�nition 3.1 (Algebrai
ally Constru
ted Cut-and-Proje
t S
heme). First wegive data for the generating latti
eD of an algebrai
ally 
onstru
ted 
ut-and-proje
ts
heme.
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al spa
e internal spa
edimension d1 d2number of related real 
onjugates r1 r2number of related non-real 
onjugates 2s1 2s2Table 1. Data for proje
tions of algebrai
ally 
onstru
ted 
ut-and-proje
t s
heme.Let K be an algebrai
 number �eld, d = [K : Q℄. Put d = r + 2s. Let �1; �2,: : : , �r be the asso
iated Q-embeddings from K to R and �r+1, : : : , �r+2s be theasso
iated Q-embeddings from K to C where �r+2i(z) = �r+2i�1(z) for 1 � i � s.Let !1, : : : , !d be a basis for K=Q. Let V be a matrix:V = ��i(!j)�1�i;j�d :If s > 0, then some element in V Zd 
an have non-real 
omponents in the last 2slines. So, as a generating latti
e D of Rd , we instead 
onsiderD = QXV Zd: (3)Here the matrix QX is de�ned byQX = Er � M1�i�sYX ; (4)where Er is the identity matrix of size r, YX = XYE2 , X 2 GL2(R) andYE2 = 1p2 � 1 1�p�1 p�1� :For matrixes M and N , M �N is the matrix of the form �M OO N �.Se
ond, we give data for proje
tions of the 
ut-and-proje
t s
heme (see alsoTable 1).� d1 is the dimension of the physi
al spa
e.� d2 is the dimension of the internal spa
e.� r1 is the number of the real 
onjugates related to the physi
al spa
e.� s1 is the half of the number of the non-real 
onjugates related to the physi
alspa
e. Thus d1 = r1 + 2s1.� r2 is the number of the real 
onjugates related to the internal spa
e.� s2 is the half of the number of the non-real 
onjugates related to the internalspa
e. Thus d2 = r2 + 2s2.� Thus r = r1 + r2 and s = s1 + s2.� The proje
tion to the physi
al spa
e is represented as the d1 � d matrix�1 = � Er1 Or1;r2 Or1;2s1 Or1;2s2O2s1;r1 O2s1;r2 E2s1 O2s1;2s2 � : (5)� The proje
tion to the internal spa
e is represented as d2 � d matrix�2 = � Or2;r1 Er2 Or2;2s1 Or2;2s2O2s2;r1 O2s2;r2 O2s2;2s1 E2s2 � : (6)Then we state the following:



ASYMMETRIES ON CUT-AND-PROJECT SETS AND RELATED TILINGS 7Theorem 3.2. For i = 1, 2, let �i be a proje
tion from Rd to Rdi whi
h is de�nedabove. Then,1. Ea
h �i is inje
tive on D, and2. Di is dense in Rdi .Thus every algebrai
ally 
onstru
ted 
ut-and-proje
t s
heme (Rd1�Rd2 ; D) is indeeda 
ut-and-proje
t s
heme.It is 
onvenient to employ dual basis (Lang [10, Corollary 1, Chapter VIII, Se
-tion 5℄).Proposition 3.3 (Dual Basis). Let !1, : : : , !d be a basis for K=Q. Then thereexists the dual basis !�1 ; : : : ; !�d of K=Q. It is de�ned by the properties Tr(!i!�j ) =Æij with Æij being a Krone
ker's delta. Here the tra
e Tr is de�ned for any x 2 Kby Tr(x) =Pdi=1 �i(x). Hen
e (tV )�1 = ��i(!�j )�i;j : (7)4. Asymmetry of n-gonal Quasilatti
esSimple examples of algebrai
ally 
onstru
ted 
ut-and-proje
t sets are 4d n-gonalquasilatti
es (Niizeki [15, 16, 17, 14℄). They are the vertex sets of Niizeki tilings.We dis
uss the (a)symmetries by Main Theorem (Theorem 2.5). First we re
all 4dn-gonal quasilatti
es.Let �n be the 
omplex number exp(2�p�1=n) with n = 5, 8, 10 or 12 (i.e.,'(n) = 4 where ' is the Euler fun
tion). Put four Q-isomorphisms �i (i = 1, 2, 3,4) from Q(�n ) to itself be�1(�n) = �n; �2(�n) = �n; �3(�n) = �inn and �4(�n) = �inn :Here in(6= 1; n� 1) is any positive integer with (in; n) = 1.Let 
n be a regular n-gon in the Gauss plane with the 
enter being the origin.The n-gonal quasilatti
e is, by de�nition,Qn(
n) = �x 2 Z[�n℄ : �3(x) 2 
n 	:The n-gonal quasilatti
e is an instan
e of an algebrai
ally 
onstru
ted 
ut-and-proje
t set of Se
tion 3: Set K = Q(�n ), d = [K : Q℄ = '(n) = 4. See Table 2. Abasis !1, : : : , !d is 1; �n; �2n; �3n:X = E2=p2. Then the generating latti
e D will be the following:Ln = 0B� 1 <�n <�2n <�3n0 =�n =�2n =�3n1 <(�3(�n)) <(�3(�2n)) <(�3(�3n))0 =(�3(�n)) =(�3(�2n)) =(�3(�3n))1CAZ4:By identifying C with R2 , D1 be
omes Z[�n℄, D2 be
omes �3�Z[�n℄� = Z��3(�n)�,D be
omes Z[�n℄�Z��3(�n)�, and [ : D1 ! D2 be
omes �3.By applying Theorem 3.2, we have the following:Theorem 4.1. Let n be 5, 8, 10 or 12. Then (R2 � R2 ; Ln) is an algebrai
ally
onstru
ted 
ut-and-proje
t s
heme (see Table 2) where the proje
tions �1 and �2are de�ned by �1 = (E2 O2;2 ) ; �2 = (O2;2 E2 ) 2M2�4(R):



8 YOHJI AKAMA, YUTAKA AKAZAWA AND SHINJI IIZUKAphysi
al spa
e internal spa
edimension d1 = 2 d2 = 2number of related real 
onjugates r1 = 0 r2 = 0number of related non-real 
onjugates 2s1 = 2 2s2 = 2Table 2. Data for proje
tions of the 
ut-and-proje
t s
heme ofn-gonal quasilatti
es (n = 5, 8, 10, 12).Let 
n � R2 be a regular n-gon with the 
enter being the origin. Then CP(Ln;
n)is Qn(
n) by identifying C with R2 .By our Main Theorem, the rotation symmetries and the in
ation symmetries ofthe n-gonal quasilatti
es are 
hara
terized as follows:Corollary 4.2. Let n be 5, 8, 10 or 12.1. An aÆne fun
tion f1 �xes Qn(
n), if and only if f1 represents the rotationaround the origin of angle 2�k=n for some k = 1; : : : ; n.2. Let � be greater than 1. Then, � is an in
ation symmetry of Qn(
n) if andonly if � 2 Z�2 
os(2�=n)� and j��j < 1 hold. Here �� means the algebrai

onjugate of � de�ned by �2 
os(2�=n)�� = 2 
os(2in�=n).The aperiodi
ities of a Penrose tiling was originally proved by Penrose with theargument of the in
ation symmetries and the density of the prototiles [19℄.Next Remark gives us some relation between algebras and our Main Theorem.Remark 4.3. The subset version of Main Theorem (Theorem 2.5) is relevant toan in�nite dimensional Lie algebra introdu
ed by Fairie and Za
hos [6℄. Their Liealgebra is generated from � J lu : l 2 N; u 2 Qn(
n)	 and the relationJ luJmv = J l+mu+v�ln if u+ v�ln 2 Qn(
n):A simple realization is J lu = exp�u exp(x)��l�xn .By de�ning f lu : C ! C as f lu(z) = u + z�l, the proviso \u+ v�ln 2 Qn(
n)" isrephrased as f lu(v) 2 Qn(
n). The 
ondition equivalent to f lu�Qn(
n)� � Qn(
n)is given in our Main Theorem.5. Asymmetry of Thurston-Akiyama TilingsThurston introdu
ed tilings based on real number representations with the radixesbeing Pisot numbers, and studied them with �nite state automata [22℄. Further, inAkiyama [1, 2℄, he gave an algebrai
 
hara
terization of Pisot numbers whi
h yieldtilings, and studied the tilings 
omprehensively. We will establish their tilings arenot symmetri
 with respe
t to any aÆne transformations.In the �rst Subse
tion, we re
all Thurston-Akiyama tilings are 
onstru
ted al-gebrai
ally from Pisot numbers �. For ea
h Thurston-Akiyama tiling, ea
h tile islabeled by Parry's �-expansion. Our key proof idea of asymmetry of the tilings isto assign to ea
h tile a unique point based on the tile's label. We 
all su
h pointthe 
hara
teristi
 point of the tile. In Subse
tion 5.2, to prove the asymmetry ofthe tiling easy, we will be 
on
erned with an equivalen
e 
lass P of tiles by thetranslation. We will prove that P 
orresponds to an asymmetri
 interval. In Sub-se
tion 5.3, we will be 
on
erned with the set 
� [P℄ of 
hara
teristi
 points of tilesin P. We will prove that 
� [P℄ is an algebrai
ally 
onstru
ted 
ut-and-proje
t set.



ASYMMETRIES ON CUT-AND-PROJECT SETS AND RELATED TILINGS 9The physi
al spa
e and the internal spa
e are related to ea
h other by the 
onju-gate map of the Pisot number �, and the window is the asymmetri
 interval fromwhi
h the asymmetries of 
� [P℄ will follow through our Main Theorem. Then wewill establish the asymmetries of the Thurston-Akiyama tilings.Below � is a real number greater than 1.5.1. Thurston-Akiyama Tilings. We �rst re
all real number representationswith non-integral radixes, and �-expansions of W. Parry [18℄. Let � > 1 be areal number and A� := Z\ [0; �). We 
an represent any real x � 0 in base �:x = 1Xi=�m a�i��i = am � � �a0:a�1a�2 � � � (am; am�1; � � � 2 A�): (8)In this 
ase we write x = ��(am � � �a0:a�1a�2 � � � )The sequen
e am : : : a0 is 
alled the integer part and a�1a�2 � � � the fra
tionpart. The representation (8) is 
alled �nite when it ends with the right-in�niterepetition 0! of 0 (it is often omitted), and is 
alled a �-expansion when it satis�esthe following greedy 
ondition: ��x�Pni=�m a�i��i�� < ��n for all n � �m.Let Fin(�) be the set of non-negative reals whi
h has a �nite �-expansion. Frdenotes the set of all fra
tion parts of Z[�℄�0:Fr := f! : :! is the �-expansion of some x 2 Z[�℄�0g :The �-expansion of 1, denoted by d(1; �), is, by de�nition, a sequen
e t1t2 � � �where t1, t2; : : : 2 A� and r0 := 1, ti := b�ri�1
 and ri := f�ri�1g for all i � 1.Here for a given x � 0, bx
 is the greatest integer lesser than or equal to x, andfxg is x � bx
. The 
on
atenation of sequen
es p and q is denoted by pq. De�ned�(1; �) byd�(1; �) := (d(1; �) if d(1; �) is an in�nite sequen
e;(t1 � � � tn�1(tn � 1))! if d(1; �) = t1 � � � tn:Here (t1 � � � tn�1(tn � 1))! is the right-in�nite repetition of the �nite sequen
et1 � � � tn�1(tn� 1). A

ording to S
hmidt [21℄, for every Pisot number �, d�(1; �) iseventually periodi
. That is, the following holds:Proposition 5.1. If � is a Pisot number, then d�(1; �) = t1 � � � tn(tn+1 � � � tn+p)!for some n+ p � 1 and some t1, : : : , tn+p 2 A�.For two in�nite sequen
es p = p1p2 � � � and q = q1q2 � � � , we write p <lex q, ifthere exists some i � 1 su
h that for all k < i, pk = qk and pi < qi. The lexi-
ographi
al order between �-expansions 
hara
terizes the numeri
al order betweenthem:Proposition 5.2. For all �-expansions :! and :�, we have ! <lex � if and only if��(:!) < ��(:�).A bi-in�nite sequen
e � � � a�2a�1a0a1a2 � � � (ai 2 A�) is 
alled �-admissible ifaiai+1 � � � <lex d�(1; �) (8i):De�ne the �-admissibility of an in�nite sequen
e similarly. Below we will impli
itlyuse W. Parry's result [18℄:



10 YOHJI AKAMA, YUTAKA AKAZAWA AND SHINJI IIZUKAProposition 5.3. The representation (8) is �-expansion if and only if it is �-admissible.De�nition 5.4. 1. Let � > 1 be a Pisot unit, that is, an algebrai
 unit whi
his a Pisot number.2. Let K = Q(�) be an algebrai
 number �eld, d = [K : Q℄. As a basis forK=Q, 
hoose 1; �; : : : ; �d�1. Put d = r + 2s. Let �1; �2, : : : , �r be theasso
iated Q-embedding from K to R and �r+1, : : : , �r+2s be the asso
iatedQ-embedding from K to C where �r+2i(z) = �r+2i�1(z) for 1 � i � s. Let�r = id.3. For every a 2 Z[�℄, put�(a) = t��1(a); : : : ; �r�1(a);<�r+1(a);=�r+1(a); : : : ;<�r+s(a);=�r+s(a)�: (9)Given a possibly bi-in�nite sequen
e � � � t2t1t0:t�1t�2 � � � with ea
h ti being inA�.If the pointPi ti�(�i) 2 Rd�1 is de�ned, then it is denoted by ��(� � � t1t0:t�1 � � � ).For ea
h �-expansion w:!, de�ne the 
ompa
t set Tw:! � Rd1 bySw:! := � ��(vw:!) 2 Z[�℄�0 : v is a �nite sequen
e s.t. vw:! is a �-expansion	;Tw:! := Cl��[Sw:!℄�:The 
ompa
tness of Tw:! follows from the property of Pisot numbers. We 
all T:! atile. There is a linear map GK : Rd1 ! Rd1 whi
h 
ommutes the following diagram:Q(�) ���K
//�

��
	 Q(�)�

��Rd1 GK // Rd1Ea
h tile T:! satis�es the following in
ation subdivision prin
iple:G1(T:!) =[a T:a!;where the union runs over all a 2 A� su
h that :a! is a �-expansion.Assume that � has the following property:(W) : 8x 2 Z[��1℄�0; 8" > 0; 9y; z 2 Fin(�) su
h that jzj < " and x = y � z:Ea
h d 2 Z>1 has in�nitely many su
h Pisot number �. A
tually, a

ordingto [7℄, if a polynomial Xd � a1Xd�1 � a2Xd�2 � � � � ad�1X � 1 2 Z[X ℄ satis�esa1 � a2 � � � � � ad�1 � 1, then it has a zero point � > 1 su
h that � is a Pisotnumber and (F) : Z�0[��1℄ � Fin(�). Then, by [2, Proposition 3℄, � satis�es theproperty (W).Given a tile T:!, an inner point x of it is 
alled ex
lusive if x is not in anothertile T:�.Remark 5.5. Let v! and �� be �-admissible. If ��(�:�) 2 Inn(Tv:!) then v is asuÆx of � and � = !.A

ording to Akiyama [2, Proposition 2℄,Proposition 5.6. The property (W) holds if and only if ea
h tile T:! has an ex-
lusive inner point.



ASYMMETRIES ON CUT-AND-PROJECT SETS AND RELATED TILINGS 11Here after we assume � satis�es (W) and is a Pisot unit. The setT� := fT:! : ! 2 Fr gprovides a self-aÆne tiling of Rd1 , and we 
all it a Thurston-Akiyama tiling.5.2. Prototiles. We will be 
on
erned with an equivalen
e 
lass P of tiles underthe translation. We 
all it a prototile. Ea
h tile has a �-expansion as the label where� is a Pisot unit that satis�es (W). Be
ause of (W) and Proposition 5.6, by the labelof a tile we 
an tell whi
h prototile the tile belongs to. Be
ause of Proposition 5.2,we 
an prove that the set of �-expansions of the tiles in P 
orresponds to a left-
losed-right-open interval.De�nition 5.7. De�ne an equivalen
e relation � � T� � T� byT � T 0 () for some x 2 Rd1 , T = T 0 + x:We 
all an element in the fa
tor set T�=� a prototile.De�nition 5.8. Let � be a Pisot unit with the property (W). Then, for d�(1; �) =t1t2 � � � , we have a �nite set f titi+1 � � � : i � 1 g of in�nite sequen
es, be
ause ofProposition 5.1. Let the set be enumerated as followsd�(1; �) = p1 >lex p2 >lex � � � >lex pN ;For the 
onvenien
e, we de�ne pN+1 by 0!. For ! 2 Fr, de�ne[!℄ := minf pk : pk >lex !; N � k � 1 gwhere min is the minimum with respe
t to the lexi
ographi
al order >lex.Lemma 5.9 (
f. Akiyama [2, Lemma 5℄). For all ! and � in Fr,1. [!℄ �lex [�℄() T:! � ��(:!) � T:� � ��(:�),2. [!℄ >lex [�℄ =) vol(T:!) < vol(T:�).Remark 5.10. Be
ause of Lemma 5.9, the equivalen
e relation � de�ned in De�-nition 5.7 is a
tually a 
ongruen
e relation.Lemma 5.11. Suppose that ! is �-admissible and 1 � k � N . Thenpk+1 �lex ! () ��(:pk+1) � ��(:!):Combined with Lemma 5.9, we have the following:Theorem 5.12. For every prototile P 2 T�=� there exists k 2 f 1; : : : ; N g su
hthat P = �T:! : ! 2 Fr; ��(:!) 2 ���(:pk+1); ��(:pk)� 	.5.3. Cut-and-Proje
t Set of Chara
teristi
 Points. We will prove that theset 
� [P℄ of 
hara
teristi
 points of tiles ea
h in prototile P is an algebrai
ally
onstru
ted 
ut-and-proje
t set. The physi
al spa
e and the internal spa
e arerelated to ea
h other by the 
onjugate map � of the Pisot number �. The window isthe left-
losed-right-open interval given in Subse
tion 5.2. The only aÆne fun
tionthat �xes the interval is identity. By our Main Theorem, it is also the 
ase forthe 
ut-and-proje
t set 
� [P℄. Be
ause the tiles in the prototile P are of the sameform, we 
an easily relate to the asymmetries of 
� [P℄ to the asymmetry of theThurston-Akiyama tiling itself, by using the 
ompa
tness of the tiles.
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al spa
e internal spa
edimension d1 = d� 1 d2 = 1number of related real 
onjugates r1 = r � 1 r2 = 1number of related non-real 
onjugates 2s1 = 2s s2 = 0Table 3. Data for proje
tions of the 
ut-and-proje
t s
heme for
hara
teristi
 point set of Thurston-Akiyama tilings.De�nition 5.13. For ea
h ! 2 Fr, we 
all ��(:!) the 
hara
teristi
 point of thetile T:!.Be
ause of Proposition 5.6, T:! = T:� implies :! = :�. So we 
an de�ne aninje
tion 
� : T� ! ��Z[�℄�su
h that for ea
h tile T 2 T�, 
�(T ) is the 
hara
teristi
 point of T .Lemma 5.14. Following De�nition 3.1, data of De�nition 5.4(2) give rise to analgebrai
 
ut-and-proje
t s
heme�Rd1 � Rd2 ; QE2=p2V Zd1+d2�where the proje
tions �1 and �2 are de�ned by Table 3. Then we have
��Z[�℄�= D1 D2 = Z[�℄D = QE2=p2V Zd	�1 -[� [�1 = � R�2	Theorem 5.15. Let � be a Pisot unit that satis�es (W) and deg� � 3 followingthe notation of De�nition 5.4. Let P 2 T�=�. Then1. there exists k = 1, : : : , N su
h that the set 
� [P℄ of 
hara
teristi
 points ofthe tiles in P is
� [P℄ = CP�QE2=p2V Zd; � ��(:pk+1); ��(:pk) ��where we de�ne pN+1 := 0!;2. if an aÆne fun
tion �xes 
�[P℄ then it is the identity; and3. 
� [P℄ has no in
ation symmetry.Remark 5.16. A �-integer is, by de�nition, a real number ��(p:) for some �-admissible p . A

ording to [3℄, the set of all �-integers is a Meyer set if d�(1; �) iseventually periodi
. On the other hand, the \set of all �-fra
tion"
�[T�℄ = � ��(:p) : p is �-admissible and in Z[�℄	= [1�i�NCP�QE2=p2VZd; � ��(:pi+1); ��(:pi) ��= CP�QE2=p2V Zd; [0; 1)�is a 
ut-and-proje
t set, whi
h is a Meyer set.Here is our Main Result:
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������!T� 
� [T�℄

������!P 2 T�=� 
�[P℄Figure 3. The tiling T� generated by the minimal Pisot number�, a prototile P 2 T�=�, and their 
hara
teristi
 point sets.Theorem 5.17 (Asymmetry of the Thurston-AkiyamaTilings). Let F : Rdeg ��1 !Rdeg ��1 be an aÆne fun
tion with �F [T ℄ : T 2 T� 	 = T�. Then F is the identity.After the authors 
ompleted the proof, they are informed by Dr. Sadahiro thatfor the Thurston-Akiyama tiling of the minimal Pisot number, the set of pointsbelonging to three di�erent tiles is a 
ut-and-proje
t set. So by applying our MainTheorem to the set, we 
an dire
tly establish the asymmetry of the Thurston-Akiyama tiling of the minimal Pisot number.A
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