
ASYMMETRIES ON CUT-AND-PROJECT SETS AND RELATEDTILINGS(切断射影集合とそれに関するタイル張りの非対称性)YOHJI AKAMA, YUTAKA AKAZAWA AND SHINJI IIZUKAAbstrat. In order to haraterize the (a)symmetries of ut-and-projet sets,we prove the following: Given a ut-and-projet set with the two projetionsbeing injetive on the lattie. Then it is �xed by an aÆne endofuntion ifand only if (1) the window restrited on the projetion of the lattie is �xedby another aÆne endofuntion, and (2) both aÆne endofuntions indue thesame endofuntion on the lattie via the two projetions. By this theorem, weprove that any Thurston-Akiyama tilings are asymmetri with respet to anyaÆne funtions. 1. IntrodutionMaterials disovered by Shehtmann et al. in 1984, unlike ordinary rystals thatused to be, were aperiodi and had unusual rotation symmetries. Those materialsare now alled quasirystals. For the arrangements of atoms in quasirystals, manymathematial idealizations have been proposed. Among them, we are onernedwith ut-and-projet sets, introdued by de Brujin [4, 5℄ to disuss the aperiodiityof Penrose tilings. In this paper, we haraterize the aÆne funtions that �x agiven ut-and-projet set, by whih we prove that no aÆne funtion �xes Thurston-Akiyama tilings. To state our Main Theorem, we reall basi de�nitions:De�nition 1.1 (Lattie). By a lattie of a real vetor spae Rn , we mean AZn forsome A 2 GLn(R).Following Moody [12℄, we de�ne a ut-and-projet sheme as follows:De�nition 1.2. A ut-and-projet sheme onsists of two omponents: a diretprodut Rd1 �Rd2 of real vetor spaes, and a lattie D in Rd1 �Rd2 suh that, forthe anonial projetions �1 : Rd1 � Rd2 ! Rd1 and �2 : Rd1 � Rd2 ! Rd2 ,1. �1 is injetive on D, and2. �2[D℄ is dense in Rd2 .We simply denote the ut-and-projet sheme by (Rd1 � Rd2 ; D). We write Di :=�i[D℄ (i = 1; 2). Rd1 is often alled the physial spae and Rd2 the internal spae.We all D the generating lattie.De�nition 1.3 (Window). We say a subset 
 of the internal spae Rd2 is a windowif 
 is a relatively ompat set with non-empty interior.De�nition 1.4. A subset C of Rd1 is alled a ut-and-projet set if there is aut-and-projet sheme (Rd1 � Rd2 ; D) and a window 
 of Rd2 suh thatC = ��1(x) : x 2 D; �2(x) 2 
	: (1)We simply denote it by CP(D;
). 1



2 YOHJI AKAMA, YUTAKA AKAZAWA AND SHINJI IIZUKAThe ut-and-projet sets are instanes of what Y. Meyer [11℄ had already intro-dued under the name of \model sets", and model sets are instanes of relativelydense harmonious sets (now alled Meyer sets), whih he introdued as samplingpoints of the Fourier series of aperiodi funtions. Cut-and-projet sets and Meyersets are studied intensively from various points of view (see Moody [13℄ for mathe-matial point of view).We are motivated by the followings works on symmetries of ut-and-projet sets:� K. Niizeki [14, 15, 16, 17℄ onstruted a 2d ut-and-projet set from n-thprimitive roots of 1, for eah n = 5, 8, 10, 12 (that is, the value of the Eulerfuntion of n is 4). He alled them 4d n-gonal quasilatties. He disussedthe assoiated 2d tilings (we all them Niizeki tilings), the self-similarity andination symmetries.� P. A. B. Pleasants [20℄ studied suÆient onditions on the lattie, projetionsand window in the ut-and-projet onstrution for various properties of re-sulting ut-and-projet set, suh as uniformity, di�ration, Ammann bars,symmetries, ination and loal rules. But it seems that he did not disussedneessary onditions for various symmetries of the ut-and-projet sets. Healso onstruted ut-and-projet sets from modules over algebrai number�elds.In this paper, we show that the symmetries (periodiities, rotation symmetriesand ination symmetries) of ut-and-projet sets orrespond to the symmetries ofthe windows. To be preise, our Main Theorem states the following:Given a ut-and-projet set with the two projetions being injetive onthe lattie. Then it is �xed by an aÆne endofuntion if and only if1. the window restrited on the projetion of the lattie is �xed byanother aÆne endofuntion, and2. both aÆne endofuntions indue the same endofuntion on the lat-tie via the projetions.The assumption of the theorem is satis�ed by n-gonal quasilatties. Thus we anprove that an aÆne funtion that �xes an n-gonal quasilattie is exatly a rotationaround the origin of angle 2�k=n for some k, and an haraterize ination sym-metries of the n-gonal quasilatties. Sine the n-gonal quasilatties are the vertexsets of Niizeki tilings (see �gure 1), we an derive the aperiodiity of the Niizekitilings.Our theorem also establishes that any Thurston-Akiyama tilings are asymmetriwith respet to any aÆne funtions. They were introdued in W. P. Thurston [22℄.He suggested a onstrution of Thurston-Akiyama tilings from Pisot numbers. Herea Pisot number is, by de�nition, an algebrai integer greater than 1 where everyonjugate other than itself has modulus stritly less than 1. Akiyama [1, 2℄ wasonerned with a property (W) introdued by Hollander [8℄, and proved that ev-ery Pisot number � with the property (W) yields indeed a tiling by Thurston'sonstrution.Unlike Niizeki tilings, it is not simple to prove that the Thurston-Akiyama tilingsare asymmetri with respet to any aÆne funtion. It is beause the fratal bound-aries of the tiles make it diÆult to omprehend the (a)symmetries of the tiles (see�gure 2). Given a Thurston-Akiyama tiling, from eah tile we hoose a point thatplays entral role in the onstrution of the tiling. We all the resulting set the



ASYMMETRIES ON CUT-AND-PROJECT SETS AND RELATED TILINGS 3

(a) (b)

() (d)Figure 1. Niizeki aperiodi tilings: (a) 5-fold, (b) 8-fold, () 10-fold non-Bravais type, and (d) 12-fold. The pitures are ourtesyof Prof. Komajiro Niizeki.harateristi point set of the Thurston-Akiyama tiling. We show that any hara-teristi point sets beome ut-and-projet sets. Then by applying our theorem, we�nally establish the asymmetries of the tiling.The paper is organized as follows: In the next setion, the basi properties of ut-and-projet sets and Main Theorem, whih haraterizes the (a)symmetries of ut-and-projet sets, are presented. Setion 3 is preparation to disuss the asymmetriesof vertex sets of Niizeki tilings and harateristi point sets of Thurston-Akiyamatilings. We go into details on algebraially onstruted ut-and-projet shemes.We give two examples of appliations of our Main Theorem. First, we disuss theasymmetries of Niizeki tilings with our framework, in Setion 4. Seond, we provethe asymmetries of Thurston-Akiyama tilings, in Setion 5. The de�nition of thetilings is given in Setion 5.1.2. Asymmetries of Cut-and-Projet SetsLet Bn(x; r) be the open ball of radius r > 0 entered around x in Rn .De�nition 2.1. A set C in Rn is alled a Delaunay set, if it has the following twoproperties:
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(a) (b)
() (d)Figure 2. Thurston-Akiyama tilings by Pisot numbers whose ir-reduible polynomials are (a) x3 � x� 1 (minimal Pisot number),(b) x3 � x2 � x � 1 (Rauzy fratal) () x3 � 3x2 + 2x � 1, and(d) x3 � 3x2 + 1. They have fratal boundaries.1. Uniformly disrete: There exists a distane r > 0 suh that for all x 2 Rn ,Bn(x; r) ontains at most one point of C.2. Relatively dense: There exists a distane R > 0 suh that for all x 2 Rn ,Bn(x; R) ontains at least one point of C.This onept is named after B. N. Delone (alternative spelling: B. N. Delaunay).For subsets X and Y of a real vetor spae, put X+Y = fx+y : x 2 X; y 2 Y gand X � Y = fx� y : x 2 X; y 2 Y g. For y 2 Y , X + y = fx+ y : x 2 X g andX � y = fx� y : x 2 X g.We reall haraterizations of Meyer sets [11℄.Proposition 2.2 (Meyer [11℄). For any � � Rn , the followings are equivalent:1. � is a Delaunay set suh that � � C +F for some ut-and-projet set C andsome �nite set F .2. � is a Delaunay set suh that �� � � � + F for some �nite set F (This isthe de�nition of a Meyer set).3. � and ��� are Delaunay sets. This haraterization is due to Lagarias [9℄.As a orollary, the following holds:



ASYMMETRIES ON CUT-AND-PROJECT SETS AND RELATED TILINGS 5Proposition 2.3. Every ut-and-projet set is a Meyer set.Given a ut-and-projet sheme (Rd1 � Rd2 ; D). Beause �1jD : D ! D1 is aninjetion, we an de�ne the natural homomorphism [ from D1 to D2 as follows:[ = �2 Æ (�1jD)�1 : D1 ! D2: (2)For u 2 D1 and U � D1, u[ and U [ stand for [(u) and [[U ℄.For a subset X of a real vetor spae, Inn(X) and Cl(X) stand for the interiorand the losure of X , and hXi stands for the Abelian subgroup generated by X .For x of a real vetor spae, the norm is denoted by kxk.Theorem 2.4. Suppose a ut-and-projet set C is de�ned by a ut-and-projetsheme (Rd1 � Rd2 ; D) and a window 
 suh that the anonial projetion �2 :Rd1 � Rd2 ! Rd2 is injetive on D. Then hC � Ci = D1.Our Main Theorem states the following:Given a ut-and-projet set with the two anonial projetions beinginjetive on the lattie. Then it is �xed by an aÆne endofuntion if andonly if1. The window restrited on the projetion of the lattie is �xed byanother aÆne endofuntion, and2. both aÆne endofuntions indue the same endofuntion on the lat-tie via the two projetions.To be more preise, Main Theorem states the following:Theorem 2.5 (Main). Let C be a ut-and-projet set de�ned by a ut-and-projetsheme (Rd1 �Rd2 ; D) suh that the anonial projetion �2 : Rd1 �Rd2 ! Rd2 isinjetive on D.Given any aÆne funtion f1 : Rd1 ! Rd1. Then1. The followings are equivalent(a) f1[C℄ = C.(b) f1[D1℄ � D1, and there exists an aÆne funtion f2 : Rd2 ! Rd2 whihsatis�es(i) f2[D2℄ � D2,(ii) [ Æ f1jD1 = f2jD2 Æ [,(iii) f2[
 \D2℄ = 
 \D2.2. The �rst assertion still holds even if we replae the two ourrenes of = in(1a) and (1(b)iii) with �.3. Algebraially Construted Cut-and-projet ShemesThe assumption of Main Theorem (Theorem 2.5) are satis�ed by algebraiallyonstruted ut-and-projet shemes, whih we here introdue. These shemes havereasonably important examples:� the n-gonal quasilatties, the vertex sets of Niizeki tilings,� the \harateristi point set" derived from Thurston-Akiyama tilings.In later setions, we show the asymmetries of Niizeki tilings and Thurston-Akiyamatilings.De�nition 3.1 (Algebraially Construted Cut-and-Projet Sheme). First wegive data for the generating lattieD of an algebraially onstruted ut-and-projetsheme.



6 YOHJI AKAMA, YUTAKA AKAZAWA AND SHINJI IIZUKAphysial spae internal spaedimension d1 d2number of related real onjugates r1 r2number of related non-real onjugates 2s1 2s2Table 1. Data for projetions of algebraially onstruted ut-and-projet sheme.Let K be an algebrai number �eld, d = [K : Q℄. Put d = r + 2s. Let �1; �2,: : : , �r be the assoiated Q-embeddings from K to R and �r+1, : : : , �r+2s be theassoiated Q-embeddings from K to C where �r+2i(z) = �r+2i�1(z) for 1 � i � s.Let !1, : : : , !d be a basis for K=Q. Let V be a matrix:V = ��i(!j)�1�i;j�d :If s > 0, then some element in V Zd an have non-real omponents in the last 2slines. So, as a generating lattie D of Rd , we instead onsiderD = QXV Zd: (3)Here the matrix QX is de�ned byQX = Er � M1�i�sYX ; (4)where Er is the identity matrix of size r, YX = XYE2 , X 2 GL2(R) andYE2 = 1p2 � 1 1�p�1 p�1� :For matrixes M and N , M �N is the matrix of the form �M OO N �.Seond, we give data for projetions of the ut-and-projet sheme (see alsoTable 1).� d1 is the dimension of the physial spae.� d2 is the dimension of the internal spae.� r1 is the number of the real onjugates related to the physial spae.� s1 is the half of the number of the non-real onjugates related to the physialspae. Thus d1 = r1 + 2s1.� r2 is the number of the real onjugates related to the internal spae.� s2 is the half of the number of the non-real onjugates related to the internalspae. Thus d2 = r2 + 2s2.� Thus r = r1 + r2 and s = s1 + s2.� The projetion to the physial spae is represented as the d1 � d matrix�1 = � Er1 Or1;r2 Or1;2s1 Or1;2s2O2s1;r1 O2s1;r2 E2s1 O2s1;2s2 � : (5)� The projetion to the internal spae is represented as d2 � d matrix�2 = � Or2;r1 Er2 Or2;2s1 Or2;2s2O2s2;r1 O2s2;r2 O2s2;2s1 E2s2 � : (6)Then we state the following:



ASYMMETRIES ON CUT-AND-PROJECT SETS AND RELATED TILINGS 7Theorem 3.2. For i = 1, 2, let �i be a projetion from Rd to Rdi whih is de�nedabove. Then,1. Eah �i is injetive on D, and2. Di is dense in Rdi .Thus every algebraially onstruted ut-and-projet sheme (Rd1�Rd2 ; D) is indeeda ut-and-projet sheme.It is onvenient to employ dual basis (Lang [10, Corollary 1, Chapter VIII, Se-tion 5℄).Proposition 3.3 (Dual Basis). Let !1, : : : , !d be a basis for K=Q. Then thereexists the dual basis !�1 ; : : : ; !�d of K=Q. It is de�ned by the properties Tr(!i!�j ) =Æij with Æij being a Kroneker's delta. Here the trae Tr is de�ned for any x 2 Kby Tr(x) =Pdi=1 �i(x). Hene (tV )�1 = ��i(!�j )�i;j : (7)4. Asymmetry of n-gonal QuasilattiesSimple examples of algebraially onstruted ut-and-projet sets are 4d n-gonalquasilatties (Niizeki [15, 16, 17, 14℄). They are the vertex sets of Niizeki tilings.We disuss the (a)symmetries by Main Theorem (Theorem 2.5). First we reall 4dn-gonal quasilatties.Let �n be the omplex number exp(2�p�1=n) with n = 5, 8, 10 or 12 (i.e.,'(n) = 4 where ' is the Euler funtion). Put four Q-isomorphisms �i (i = 1, 2, 3,4) from Q(�n ) to itself be�1(�n) = �n; �2(�n) = �n; �3(�n) = �inn and �4(�n) = �inn :Here in(6= 1; n� 1) is any positive integer with (in; n) = 1.Let 
n be a regular n-gon in the Gauss plane with the enter being the origin.The n-gonal quasilattie is, by de�nition,Qn(
n) = �x 2 Z[�n℄ : �3(x) 2 
n 	:The n-gonal quasilattie is an instane of an algebraially onstruted ut-and-projet set of Setion 3: Set K = Q(�n ), d = [K : Q℄ = '(n) = 4. See Table 2. Abasis !1, : : : , !d is 1; �n; �2n; �3n:X = E2=p2. Then the generating lattie D will be the following:Ln = 0B� 1 <�n <�2n <�3n0 =�n =�2n =�3n1 <(�3(�n)) <(�3(�2n)) <(�3(�3n))0 =(�3(�n)) =(�3(�2n)) =(�3(�3n))1CAZ4:By identifying C with R2 , D1 beomes Z[�n℄, D2 beomes �3�Z[�n℄� = Z��3(�n)�,D beomes Z[�n℄�Z��3(�n)�, and [ : D1 ! D2 beomes �3.By applying Theorem 3.2, we have the following:Theorem 4.1. Let n be 5, 8, 10 or 12. Then (R2 � R2 ; Ln) is an algebraiallyonstruted ut-and-projet sheme (see Table 2) where the projetions �1 and �2are de�ned by �1 = (E2 O2;2 ) ; �2 = (O2;2 E2 ) 2M2�4(R):



8 YOHJI AKAMA, YUTAKA AKAZAWA AND SHINJI IIZUKAphysial spae internal spaedimension d1 = 2 d2 = 2number of related real onjugates r1 = 0 r2 = 0number of related non-real onjugates 2s1 = 2 2s2 = 2Table 2. Data for projetions of the ut-and-projet sheme ofn-gonal quasilatties (n = 5, 8, 10, 12).Let 
n � R2 be a regular n-gon with the enter being the origin. Then CP(Ln;
n)is Qn(
n) by identifying C with R2 .By our Main Theorem, the rotation symmetries and the ination symmetries ofthe n-gonal quasilatties are haraterized as follows:Corollary 4.2. Let n be 5, 8, 10 or 12.1. An aÆne funtion f1 �xes Qn(
n), if and only if f1 represents the rotationaround the origin of angle 2�k=n for some k = 1; : : : ; n.2. Let � be greater than 1. Then, � is an ination symmetry of Qn(
n) if andonly if � 2 Z�2 os(2�=n)� and j��j < 1 hold. Here �� means the algebraionjugate of � de�ned by �2 os(2�=n)�� = 2 os(2in�=n).The aperiodiities of a Penrose tiling was originally proved by Penrose with theargument of the ination symmetries and the density of the prototiles [19℄.Next Remark gives us some relation between algebras and our Main Theorem.Remark 4.3. The subset version of Main Theorem (Theorem 2.5) is relevant toan in�nite dimensional Lie algebra introdued by Fairie and Zahos [6℄. Their Liealgebra is generated from � J lu : l 2 N; u 2 Qn(
n)	 and the relationJ luJmv = J l+mu+v�ln if u+ v�ln 2 Qn(
n):A simple realization is J lu = exp�u exp(x)��l�xn .By de�ning f lu : C ! C as f lu(z) = u + z�l, the proviso \u+ v�ln 2 Qn(
n)" isrephrased as f lu(v) 2 Qn(
n). The ondition equivalent to f lu�Qn(
n)� � Qn(
n)is given in our Main Theorem.5. Asymmetry of Thurston-Akiyama TilingsThurston introdued tilings based on real number representations with the radixesbeing Pisot numbers, and studied them with �nite state automata [22℄. Further, inAkiyama [1, 2℄, he gave an algebrai haraterization of Pisot numbers whih yieldtilings, and studied the tilings omprehensively. We will establish their tilings arenot symmetri with respet to any aÆne transformations.In the �rst Subsetion, we reall Thurston-Akiyama tilings are onstruted al-gebraially from Pisot numbers �. For eah Thurston-Akiyama tiling, eah tile islabeled by Parry's �-expansion. Our key proof idea of asymmetry of the tilings isto assign to eah tile a unique point based on the tile's label. We all suh pointthe harateristi point of the tile. In Subsetion 5.2, to prove the asymmetry ofthe tiling easy, we will be onerned with an equivalene lass P of tiles by thetranslation. We will prove that P orresponds to an asymmetri interval. In Sub-setion 5.3, we will be onerned with the set � [P℄ of harateristi points of tilesin P. We will prove that � [P℄ is an algebraially onstruted ut-and-projet set.



ASYMMETRIES ON CUT-AND-PROJECT SETS AND RELATED TILINGS 9The physial spae and the internal spae are related to eah other by the onju-gate map of the Pisot number �, and the window is the asymmetri interval fromwhih the asymmetries of � [P℄ will follow through our Main Theorem. Then wewill establish the asymmetries of the Thurston-Akiyama tilings.Below � is a real number greater than 1.5.1. Thurston-Akiyama Tilings. We �rst reall real number representationswith non-integral radixes, and �-expansions of W. Parry [18℄. Let � > 1 be areal number and A� := Z\ [0; �). We an represent any real x � 0 in base �:x = 1Xi=�m a�i��i = am � � �a0:a�1a�2 � � � (am; am�1; � � � 2 A�): (8)In this ase we write x = ��(am � � �a0:a�1a�2 � � � )The sequene am : : : a0 is alled the integer part and a�1a�2 � � � the frationpart. The representation (8) is alled �nite when it ends with the right-in�niterepetition 0! of 0 (it is often omitted), and is alled a �-expansion when it satis�esthe following greedy ondition: ��x�Pni=�m a�i��i�� < ��n for all n � �m.Let Fin(�) be the set of non-negative reals whih has a �nite �-expansion. Frdenotes the set of all fration parts of Z[�℄�0:Fr := f! : :! is the �-expansion of some x 2 Z[�℄�0g :The �-expansion of 1, denoted by d(1; �), is, by de�nition, a sequene t1t2 � � �where t1, t2; : : : 2 A� and r0 := 1, ti := b�ri�1 and ri := f�ri�1g for all i � 1.Here for a given x � 0, bx is the greatest integer lesser than or equal to x, andfxg is x � bx. The onatenation of sequenes p and q is denoted by pq. De�ned�(1; �) byd�(1; �) := (d(1; �) if d(1; �) is an in�nite sequene;(t1 � � � tn�1(tn � 1))! if d(1; �) = t1 � � � tn:Here (t1 � � � tn�1(tn � 1))! is the right-in�nite repetition of the �nite sequenet1 � � � tn�1(tn� 1). Aording to Shmidt [21℄, for every Pisot number �, d�(1; �) iseventually periodi. That is, the following holds:Proposition 5.1. If � is a Pisot number, then d�(1; �) = t1 � � � tn(tn+1 � � � tn+p)!for some n+ p � 1 and some t1, : : : , tn+p 2 A�.For two in�nite sequenes p = p1p2 � � � and q = q1q2 � � � , we write p <lex q, ifthere exists some i � 1 suh that for all k < i, pk = qk and pi < qi. The lexi-ographial order between �-expansions haraterizes the numerial order betweenthem:Proposition 5.2. For all �-expansions :! and :�, we have ! <lex � if and only if��(:!) < ��(:�).A bi-in�nite sequene � � � a�2a�1a0a1a2 � � � (ai 2 A�) is alled �-admissible ifaiai+1 � � � <lex d�(1; �) (8i):De�ne the �-admissibility of an in�nite sequene similarly. Below we will impliitlyuse W. Parry's result [18℄:



10 YOHJI AKAMA, YUTAKA AKAZAWA AND SHINJI IIZUKAProposition 5.3. The representation (8) is �-expansion if and only if it is �-admissible.De�nition 5.4. 1. Let � > 1 be a Pisot unit, that is, an algebrai unit whihis a Pisot number.2. Let K = Q(�) be an algebrai number �eld, d = [K : Q℄. As a basis forK=Q, hoose 1; �; : : : ; �d�1. Put d = r + 2s. Let �1; �2, : : : , �r be theassoiated Q-embedding from K to R and �r+1, : : : , �r+2s be the assoiatedQ-embedding from K to C where �r+2i(z) = �r+2i�1(z) for 1 � i � s. Let�r = id.3. For every a 2 Z[�℄, put�(a) = t��1(a); : : : ; �r�1(a);<�r+1(a);=�r+1(a); : : : ;<�r+s(a);=�r+s(a)�: (9)Given a possibly bi-in�nite sequene � � � t2t1t0:t�1t�2 � � � with eah ti being inA�.If the pointPi ti�(�i) 2 Rd�1 is de�ned, then it is denoted by ��(� � � t1t0:t�1 � � � ).For eah �-expansion w:!, de�ne the ompat set Tw:! � Rd1 bySw:! := � ��(vw:!) 2 Z[�℄�0 : v is a �nite sequene s.t. vw:! is a �-expansion	;Tw:! := Cl��[Sw:!℄�:The ompatness of Tw:! follows from the property of Pisot numbers. We all T:! atile. There is a linear map GK : Rd1 ! Rd1 whih ommutes the following diagram:Q(�) ���K
//�

��
	 Q(�)�

��Rd1 GK // Rd1Eah tile T:! satis�es the following ination subdivision priniple:G1(T:!) =[a T:a!;where the union runs over all a 2 A� suh that :a! is a �-expansion.Assume that � has the following property:(W) : 8x 2 Z[��1℄�0; 8" > 0; 9y; z 2 Fin(�) suh that jzj < " and x = y � z:Eah d 2 Z>1 has in�nitely many suh Pisot number �. Atually, aordingto [7℄, if a polynomial Xd � a1Xd�1 � a2Xd�2 � � � � ad�1X � 1 2 Z[X ℄ satis�esa1 � a2 � � � � � ad�1 � 1, then it has a zero point � > 1 suh that � is a Pisotnumber and (F) : Z�0[��1℄ � Fin(�). Then, by [2, Proposition 3℄, � satis�es theproperty (W).Given a tile T:!, an inner point x of it is alled exlusive if x is not in anothertile T:�.Remark 5.5. Let v! and �� be �-admissible. If ��(�:�) 2 Inn(Tv:!) then v is asuÆx of � and � = !.Aording to Akiyama [2, Proposition 2℄,Proposition 5.6. The property (W) holds if and only if eah tile T:! has an ex-lusive inner point.



ASYMMETRIES ON CUT-AND-PROJECT SETS AND RELATED TILINGS 11Here after we assume � satis�es (W) and is a Pisot unit. The setT� := fT:! : ! 2 Fr gprovides a self-aÆne tiling of Rd1 , and we all it a Thurston-Akiyama tiling.5.2. Prototiles. We will be onerned with an equivalene lass P of tiles underthe translation. We all it a prototile. Eah tile has a �-expansion as the label where� is a Pisot unit that satis�es (W). Beause of (W) and Proposition 5.6, by the labelof a tile we an tell whih prototile the tile belongs to. Beause of Proposition 5.2,we an prove that the set of �-expansions of the tiles in P orresponds to a left-losed-right-open interval.De�nition 5.7. De�ne an equivalene relation � � T� � T� byT � T 0 () for some x 2 Rd1 , T = T 0 + x:We all an element in the fator set T�=� a prototile.De�nition 5.8. Let � be a Pisot unit with the property (W). Then, for d�(1; �) =t1t2 � � � , we have a �nite set f titi+1 � � � : i � 1 g of in�nite sequenes, beause ofProposition 5.1. Let the set be enumerated as followsd�(1; �) = p1 >lex p2 >lex � � � >lex pN ;For the onveniene, we de�ne pN+1 by 0!. For ! 2 Fr, de�ne[!℄ := minf pk : pk >lex !; N � k � 1 gwhere min is the minimum with respet to the lexiographial order >lex.Lemma 5.9 (f. Akiyama [2, Lemma 5℄). For all ! and � in Fr,1. [!℄ �lex [�℄() T:! � ��(:!) � T:� � ��(:�),2. [!℄ >lex [�℄ =) vol(T:!) < vol(T:�).Remark 5.10. Beause of Lemma 5.9, the equivalene relation � de�ned in De�-nition 5.7 is atually a ongruene relation.Lemma 5.11. Suppose that ! is �-admissible and 1 � k � N . Thenpk+1 �lex ! () ��(:pk+1) � ��(:!):Combined with Lemma 5.9, we have the following:Theorem 5.12. For every prototile P 2 T�=� there exists k 2 f 1; : : : ; N g suhthat P = �T:! : ! 2 Fr; ��(:!) 2 ���(:pk+1); ��(:pk)� 	.5.3. Cut-and-Projet Set of Charateristi Points. We will prove that theset � [P℄ of harateristi points of tiles eah in prototile P is an algebraiallyonstruted ut-and-projet set. The physial spae and the internal spae arerelated to eah other by the onjugate map � of the Pisot number �. The window isthe left-losed-right-open interval given in Subsetion 5.2. The only aÆne funtionthat �xes the interval is identity. By our Main Theorem, it is also the ase forthe ut-and-projet set � [P℄. Beause the tiles in the prototile P are of the sameform, we an easily relate to the asymmetries of � [P℄ to the asymmetry of theThurston-Akiyama tiling itself, by using the ompatness of the tiles.



12 YOHJI AKAMA, YUTAKA AKAZAWA AND SHINJI IIZUKAphysial spae internal spaedimension d1 = d� 1 d2 = 1number of related real onjugates r1 = r � 1 r2 = 1number of related non-real onjugates 2s1 = 2s s2 = 0Table 3. Data for projetions of the ut-and-projet sheme forharateristi point set of Thurston-Akiyama tilings.De�nition 5.13. For eah ! 2 Fr, we all ��(:!) the harateristi point of thetile T:!.Beause of Proposition 5.6, T:! = T:� implies :! = :�. So we an de�ne aninjetion � : T� ! ��Z[�℄�suh that for eah tile T 2 T�, �(T ) is the harateristi point of T .Lemma 5.14. Following De�nition 3.1, data of De�nition 5.4(2) give rise to analgebrai ut-and-projet sheme�Rd1 � Rd2 ; QE2=p2V Zd1+d2�where the projetions �1 and �2 are de�ned by Table 3. Then we have
��Z[�℄�= D1 D2 = Z[�℄D = QE2=p2V Zd	�1 -[� [�1 = � R�2	Theorem 5.15. Let � be a Pisot unit that satis�es (W) and deg� � 3 followingthe notation of De�nition 5.4. Let P 2 T�=�. Then1. there exists k = 1, : : : , N suh that the set � [P℄ of harateristi points ofthe tiles in P is� [P℄ = CP�QE2=p2V Zd; � ��(:pk+1); ��(:pk) ��where we de�ne pN+1 := 0!;2. if an aÆne funtion �xes �[P℄ then it is the identity; and3. � [P℄ has no ination symmetry.Remark 5.16. A �-integer is, by de�nition, a real number ��(p:) for some �-admissible p . Aording to [3℄, the set of all �-integers is a Meyer set if d�(1; �) iseventually periodi. On the other hand, the \set of all �-fration"�[T�℄ = � ��(:p) : p is �-admissible and in Z[�℄	= [1�i�NCP�QE2=p2VZd; � ��(:pi+1); ��(:pi) ��= CP�QE2=p2V Zd; [0; 1)�is a ut-and-projet set, whih is a Meyer set.Here is our Main Result:
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������!T� � [T�℄
������!P 2 T�=� �[P℄Figure 3. The tiling T� generated by the minimal Pisot number�, a prototile P 2 T�=�, and their harateristi point sets.Theorem 5.17 (Asymmetry of the Thurston-AkiyamaTilings). Let F : Rdeg ��1 !Rdeg ��1 be an aÆne funtion with �F [T ℄ : T 2 T� 	 = T�. Then F is the identity.After the authors ompleted the proof, they are informed by Dr. Sadahiro thatfor the Thurston-Akiyama tiling of the minimal Pisot number, the set of pointsbelonging to three di�erent tiles is a ut-and-projet set. So by applying our MainTheorem to the set, we an diretly establish the asymmetry of the Thurston-Akiyama tiling of the minimal Pisot number.AknowledgmentThe �rst author thanks Prof. Atsushi Yoshikawa to host him at Kyushu Univer-sity. The authors thank to Prof. Komajiro Niizeki (Tohoku University) for givingpitures of his tilings. Referenes[1℄ Shigeki Akiyama. Self aÆne tiling and Pisot numeration system. In Number theory and itsappliations (Kyoto, 1997), volume 2 of Dev. Math., pages 7{17. Kluwer Aad. Publ., Dor-dreht, 1999.[2℄ Shigeki Akiyama. On the boundary of self aÆne tilings generated by Pisot numbers. J. Math.So. Japan, 54(2):283{308, 2002.[3℄ Shigeki Akiyama, Fr�ed�erique Bassino, and Christiane Frougny. Automata for arithmetiMeyer sets. In LATIN 2004: Theoretial informatis, volume 2976 of Leture Notes in Com-put. Si., pages 252{261. Springer, Berlin, 2004.[4℄ N. G. de Bruijn. Algebrai theory of Penrose's non-periodi tilings of the plane. I. Kon.Nederl. Akad. Wetesh. Pro. Ser. A. (=Indag. Math.), pages 39{52, 1981.[5℄ N. G. de Bruijn. Algebrai theory of Penrose's non-periodi tilings of the plane. II. Kon.Nederl. Akad. Wetesh. Pro. Ser. A. (=Indag. Math.), pages 53{66, 1981.
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