
Performance of the GAP-function Normalizer and

an attempt of its improvement

Izumi Miyamoto

University of Yamanashi

imiyamoto@yamanashi.ac.jp

1 Introduction

Let Ω = {1, 2, · · · , n}. Let G and H be permutation groups on Ω. The normal-
izer of G in H is defined by

Normalizer(H, G) = { h ∈ H |h−1Gh = G }.

Suppose H = Sym(n) =SymmetricGroup(Ω). GAP4r4[1] - Groups, Algo-
rithms, Programming (version 4)- a System for Computational Discrete Algebra
has a special function in this case. If G is intransitive or imprimitive, the nor-
malizer is computed in a smaller subgroup of Sym(n).

Sym(n)

Block system of G

If G is as above, let W =WreathProduct(Sym(n/2), Sym(2)), then

Normalizer(Sym(n), G) ⊆ W

So GAP4 computes Normalizer(W, G) in this case. Even if G is primitive,
we have such a subgroup K like above in [2], if G is not doubly transitive.

Proposition 1.1 [2] If G is transitive, then the normalizer of G is contained in
the automorphism group of the association scheme formed by G, which consists
of the orbits of G on Ω × Ω.

If G is transitive, we can also use the following lemma.

Lemma 1.2 [3] Let K be a permutation group on Ω. Let F be a tuple [p1, p2, · · · , pr]
of points in Ω and let Gi be the stabilizer of the subset [p1, p2, · · · , pi] of F as a

1

tuple in G for i = 1, 2, · · · , r. Let I i be the group of isomorphisms of the system
of association schemes of Gi on Ω\[p1, p2, · · · , pi]. Set I0 = I, G0 = G and set
I{0..i} = I0 ∩ I1 ∩ · · · ∩ I i. Suppose that Gi ∩ K is transitive on the orbit of
I{0..i}∩K containing the point pi+1 for i = 0, 1, · · · , r−1. Then the normalizer
of G in K is generated by G ∩ K and the normalizer of G in I{0..r} ∩ K.

In [3, 4] the author wrote a program to compute the normalizers of permu-
tation groups using these algorithms. Especially, the program computes the
normalizers of groups of small degree very smoothly. Automorphism groups of
association schemes are computed by a backtrack method and so are normaliz-
ers. WreathProducts are obtained from some typical association schemes. This
time, we only use the lemma with some heuristics and do not use association
schemes. Here the heuristics arise from the subgroups I{0..i} ∩K, i = 0, 1, · · · , r
in the lemma, since any of them can be used to compute the normalizer. We
wrote a program of about 50 lines modifying the GAP4 Normalizer function.

2 Computing Data of Normalizers of Groups of

Small Degree

Consulting on the GAP library, in 2000 small degree means ≤ 22. Now it
means ≤ 30. There are 36620 transitive groups of degree n = |Ω| form 20 to
30 in the GAP4 library. We have computed the normalizers of these groups in
the symmetric groups. In the following tables GAP4 means GAP4 Normalizer
in Sym(n) and Alt(n), ISSAC2000′ revised version of the program in [3] and
AC2005 the program of this talk. Table 1 shows how the programs are improved
particularly in time consuming cases. Table 2 is the cumulative frequency table
of Table 1 and particularly shows how the easy cases are computed. Table 3
shows some examples such that normalizers are easily computed by one program
but not easily computed by another program. So from Table 1 we can see that
the programs are improved in general but from Table 3 that there does not
exist the best program for all groups. Some examples of hard cases for GAP are
shown in the third part of Table 3. In fact there exist 755 transitive groups of
degree up to 30 such that the normalizer of each group in the symmetric group
was not computed within 10 hours by GAP and we stopped computing in 10
hours.

2

Table 1: Computing times of the Normalizers of Transitive Groups of degree n
in Sym(n), 20 ≤ n ≤ 30

time GAP4 ISSAC2000′ AC2005
∗ ≤0.1sec. 10510 1829 305

0.1sec.< ∗ ≤0.2sec. 11728 7231 1223
0.2sec.< ∗ ≤0.5sec 5433 22898 12248
0.5sec.< ∗ ≤1sec. 2200 2973 16089
1sec.< ∗ ≤2sec. 1098 629 3742
2sec.< ∗ ≤5sec. 1015 363 1921
5sec.< ∗ ≤10sec. 621 182 682
10sec.< ∗ ≤30sec. 834 232 229
30sec.< ∗ ≤1min. 381 126 71
1min.< ∗ ≤2min. 480 40 43
2min.< ∗ ≤5min. 486 30 32
5min.< ∗ ≤10min. 357 6 8
10min.< ∗ ≤30min. 348 9 16

30min.< ∗ ≤1h. 114 12 1
1h.< ∗ ≤2h. 63 15 2
2h.< ∗ ≤5h. 112 24 3
5h.< ∗ ≤10h. 85 7 4

10h.< ∗ 755 14 1

Table 2: Computing times of the Normalizers of Transitive Groups of degree n
in Sym(n), 20 ≤ n ≤ 30 (cumulative frequency)

time GAP4 ISSAC2000′ AC2005
∗ ≤0.1sec. 10510 1829 305
∗ ≤0.2sec. 22238 9060 1528
∗ ≤0.5sec. 27671 31958 13776
∗ ≤1sec. 29871 34931 29865
∗ ≤2sec. 30969 35560 33607
∗ ≤5sec. 31984 35923 35528
∗ ≤10sec. 32605 36105 36210
∗ ≤30sec. 33439 36337 36439
∗ ≤1min. 33820 36463 36510
∗ ≤2min. 34300 36503 36553
∗ ≤5min. 34786 36533 36585
∗ ≤10min. 35143 36539 36593
∗ ≤30min. 35491 36548 36609
∗ ≤1h. 35605 36560 36610
∗ ≤2h. 35668 36575 36612
∗ ≤5h. 35780 36599 36615
∗ ≤10h. 35865 36606 36619

− 36620 36620 36620

3

Table 3: Computing times of the Normalizers of some TransitiveGroup(n, k) in
Sym(n) (in seconds)

n k GAP4 ISSAC2000′ AC2005
27 388 57 49 4782
27 583 43 14 9686
27 620 6 16 6153
27 863 1.6 1.6 849
27 890 24 15 954
30 293 1248 286 47279
30 300 98 110 34505
30 545 82 35 19726
30 563 215 57 19629
30 826 9 7 12504
30 840 58 52 7949
24 2930 2 10 104
28 1821 0.05 1.79 0.91
24 24924 1852 5938 0.3
28 1075 16 72 0.7
30 1149 28 88 1.6
30 1367 39 122 0.4
20 888 8137 0.1 0.3
21 24 30390 0.2 0.2
22 15 >36000 0.3 0.1
24 2950 >36000 46 0.2
24 20417 17567 185 0.2
25 34 >36000 0.2 0.2
25 36 18393 0.2 0.2
26 29 >36000 0.5 0.2
26 76 11016 0.4 2.9
27 805 >36000 0.4 0.1
27 806 23223 1.1 0.3

References

[1] The GAP Groups: GAP - groups, algorithms and programming, version 4.
Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule,
Aachen, Germany and School of Mathematical and Computational Sciences,
Univ. St. Andrews, Scotland, 2000.

[2] I. Miyamoto: Computation of normalizers in symmet-
ric groups using association scheme ftp://tnt.math.metro-
u.ac.jp/pub/ac97/PROCEEDINGS/miyamoto/ (in Japanese)

[3] I. Miyamoto: Computing normalizers of permutation groups efficiently us-
ing isomorphisms of association schemes. In Proceedings of the 2000 Inter-

4

national Symposium on Symbolic and Algebraic Computation, pp 220–224,
C. Traverso, ed. ACM, 2000.

[4] I. Miyamoto: Computing isomorphisms of association schemes and its ap-
plications. J. Symbolic Comp., 32:133–141, 2001.

5

