
On the Index Calculus for Jacobian of
Hyperelliptic Curves of Small Genus

Koh-ichi Nagao, nagao@kanto-gakuin.ac.jp,

Dept. of Engineering, Kanto-Gakuin Univ.

Abstract. Gaudry present a variation of index calculus attack for solv-
ing the DLP in the Jacobian of hyperelliptic curves, which is a basic tool
for solving elliptic curve cryptosystem using Weil descent. Gaudry and
Harley improve this algorithm by the use of the restriction of smooth
divisors. Later, Thérialut improve these kind of algorithm by the use of
the one large prime. Here, we will present a variation of these kind of
algorithm, which use two large primes (Thérialut use one large prime)
and is faster than previous ones.
Keywords Index calculus attack, Jacobian, Hyperelliptic curve, DLP,

1 Introduction

Gaudry [3] first present a variation of index calculus attack for hyper-
elliptic curves that could solve the DLP on the Jacobian of an hyper-
elliptic curve of small genus by the use of smooth divisors. It requires
O(q) storage and at now, its implementation is difficult. However, in
the near future, many computers linked by high speed network will ap-
pear and the possibility of this attack is believed to be realized. Gaudry
and Harley(cf. [2]) improve this algorithm by the use of the restric-
tion of smooth divisors. Later, Thérialut[1] improve these kind of al-
gorithm by the use of the one large prime. In [1], these algorithms work

in time O(q
2− 2

g+1+ε
) and O(q

2− 4
2g+1+ε

) respectively. Thériault’s algo-
rithm uses the almost-smooth divisor D =

P
D(Pi) that all but one

of the Pi’s are in the set B called factor base. This technique was of-
ten used in the number field sieve factorization algorithm, which uses
the almost smooth integer n =

Q
pi, that all but one of the pi’s are

in the factor base B, which is the set of small primes. P ′i s (p′is in case
of factorization), not including in B, are called large primes. In factor-
ization algorithm, the technique using large prime (including the cases
using 2 or 3 large primes) contribute speeding up factorization, but does
not seems to contribute decreasing its complexity. The distribution of
large prime is very one-sided. This is the reason that the complexity
does not decrease. For the index calculus for the Jacobian of curves,
we first compute the point of Jacobian and later consult whether it
is almost smooth or not and the distribution of the large primes is
unique. So that, the new algorithm that use the 2-almost smooth di-
visors, that all but 2 of the Pi’s are in the set B, is useful and con-
tribute to decrease its complexity. For my sense, similar algorithm using
3 large primes, only contribute speeding up to solve the discrete log, but
does not contribute to decrease its complexity. For example, the almost
smooth divisor of the form v1 =

P
terms of B+D(P1), and the 2-almost

smooth divisors of the form v2 =
P

terms of B + D(P1) + D(P2), v3 =P
terms of B+D(P2)+D(P3) are given, v1−v2 =

P
terms of B−D(P2),

v1 − v2 + v3 =
P

terms of B + D(P3) are other almost smooth divisors.
So, we can get much more almost smooth divisors from gathering 2-
almost smooth divisors. From this improvement, we get an attack of a

running time of O(q
2− 2

g
+ε

). In case of small genus case, this improvement
is especially useful.
genus Thériault algorithm Our Algorithm

3 O(q10/7) O(q4/3)

4 O(q14/9) O(q3/2)
For example, in the case of genus being 3 and q being a 60-bit prime
power, theoretically, about 1600

.
= 260(10/7−4/3) times improvement is

expected.

2 Jacobian arithmetic

Let C be a hyperelliptic curve of genus g over Fq of the form y2+h(x)y =
f(x) with deg f = 2g + 1 and deg h ≤ g. Further, Use the notation Jq

for JacC(Fq).
Further, we will assume that |Jq| is odd prime number, for simplicity.

Definition 1 Given D1,D2 ∈ Jq such that D2 ∈< D1 >, DLP for
(D1, D2) on Jq is computing λ such that D2 = λD1.

For an element P = (x, y) in C(F̄q), put −P := (x,−h(x)− y).

Lemma 1 C(Fq) is written by the union of disjoint sets P ∪−P ∪{∞},
where −P := {−P |P ∈ P}.

Proof. Since |Jq| is odd prime, we have 2 6 ||Jq| and there are no point
P ∈ C(Fq) such that P = −P .

Further, we will fix P.
Point of JacC can be represented uniquely by the reduced divisor of the
form

kX
i=1

niPi −
kX

i=1

ni∞, Pi ∈ C(F̄q), Pi 6= −Pj for i 6= j

with ni ≥ 0 and
P

ni ≤ g.

Definition 2 The reduced divisor of a point of Jacobian Jq is written
by the elements of C(Fq) i.e.

kX
i=1

niPi −
kX

i=1

ni∞, Pi ∈ C(Fq).

Then the point is said to be potentially smooth point.

Let D(P) := P −∞. Note that P + (−P) ∼ 2∞. From lemma 1, poten-
tially smooth point v of Jq can be represented of the form

X
P∈P

n
(v)
P D(P)

with n
(v)
P ∈ Z and

P
P∈P |n(v)

P | ≤ g. Further, we will use this represen-
tation to potentially smooth points.

Definition 3 A subset B of P used to define smoothness is called factor
base.

Definition 4 A point P ∈ P\B is called large prime.

Definition 5 A divisor v of the form
X
P∈B

n
(v)
P D(P)

is called smooth divisor.

Definition 6 A divisor v of the form

n
(v)

P ′ P
′ +

X
P∈B

n
(v)
P D(P),

where P ′ is a large prime, is called almost smooth divisor.

Definition 7 A divisor v of the form

n
(v)

P ′ P
′ + n

(v)

P ′′P
′′ +

X
P∈B

n
(v)
P D(P),

where P ′, P ′′ are large primes, is called 2-almost smooth divisor.

Definition 8 An element J ∈ Jq is called (resp. almost smooth, resp.
2-almost smooth) point, if the reduced divisor representing J is smooth
(resp. almost smooth, resp. 2-almost smooth) divisor.

Further, we will consider the coefficients nP of a smooth (resp. almost
smooth, resp. 2-almost smooth) divisor modulo |Jq|. For a smooth (resp.
almost smooth, resp. 2-almost smooth) divisor v, put

l(v) := #{P ∈ B|n(v)
P 6= 0}.

Lemma 2 Let v1, v2 be smooth (resp. almost smooth, resp. 2-almost
smooth) divisors and let r1, r2 be integers modulo |Jq|. Then the cost
for computing r1v1 + r2v2 is O(g2(log q)2(l(v1) + l(v2)).

Proof. It requires l(v1)+ l(v2)-time products and additions modulo |Jq|.
Note that |Jq| .

= qg. Since the cost of one elementary operation modulo
|Jq| is log |Jq| = (g log q)2, we have this estimation.

3 Outline of algorithm

In this section, we present the outline of the proposed algorithm. Let k
be a real number satisfying 0 < k < 1/2g. Further in this paper, we will
use k as a parameter of this algorithm. Put

r := r(k) =
g − 1 + k

g
.

We will fix a set of factor base B with |B| = qr.

Lemma 3

2r > 1 + k > 1 >
1 + r

2
=

2g + k − 1

2g
>

(g − 1) + (g + 1)k

g
.

Proof. trivial.

The whole algorithm consists of the following 7 parts.

Algorithm 1 Whole Algorithm
Input: C/Fq hyper elliptic curve of small genus g, D1, D2 ∈ Jq such that D2 ∈< D1 >

.
Output: Integer λ modulo |Jq| such that D2 = λD1.
1: Part 1 Computing all points of C(Fq) and making P and fix B ⊂ P with |B| = qr.
2: Part 2 Gathering 2-almost smooth divisors and almost smooth divisors

Computing a set V2 of 2-almost smooth points and a set V1 of almost smooth points

of Jq, of the form αD1 + βD2 with |V1| > q
(g−1)+(g+1)k

g and |V2| > q1+k.

3: Part 3 Computing a set of almost smooth divisor Hm with |Hm| > q(1+r)/2.
4: Part 4 Computing a set of smooth divisor H with |H| > qr.
5: Part 5 Solving linear algebra of the size qr × qr

Computing integers {rh}h∈H modulo |Jq|, satisfying
P

h∈H rhh ≡ 0 mod |Jq|.
6: Part 6 Computing integers {sv}v∈V1∪V2 modulo |Jq|, satisfying

P
v∈V1∪V2

svv ≡
0 mod |Jq|.

7: Part 7 Computing λ.

4 Gathering 2-almost smooth points and almost
smooth points

Lemma 4 The probability that a point in Jq is almost smooth is

1

(g − 1)!
q(−1+r)(g−1)

and the probability that a point is 2-almost smooth is

1

2(g − 2)!
q(−1+r)(g−2).

Algorithm 2 Gathering the 2-almost smooth pts and almost smooth pts
Input: C/Fq curve of genus g, D1, D2 ∈ JacC(Fq)
Output: V1 a set of almost smooth divisors, V2 a set of 2-almost smooth divisors

such that |V2| > q1+k, |V1| > q
(g−1)+(g+1)k

g , Integers {(αv, βv)}v∈V1∪V2 such that
v = αvD1 + βvD2

1: V1 ← {}, V2 ← {}
2: repeat
3: Let α, β be random numbers modulo |Jq|
4: Compute v = αD1 + βD2

5: if v is almost smooth then
6: V1 ← V1 ∪ {v}
7: (αv, βv) ← (α, β)
8: end if
9: if v is 2-almost smooth then

10: V2 ← V2 ∪ {v}
11: (αv, βv) ← (α, β)
12: end if

13: until |V2| > q1+k and |V1| > q
(g−1)+(g+1)k

g

14: return V1,V2,{(αv, βv)}v∈V1∪V2

Proof. We can get above lemma similarly from proposition 3,4,5 in [1].
For example, the probability of 2-almost smooth points is roughly esti-
mated by

(2|B|)g−2 (2|P\B|)2
2!(g − 2)!

÷ |Jq| .
=

(qr)g−2 q2

2!(g − 2)!qg
=

1

2(g − 2)!
q(−1+r)(g−2).

From this lemma, the number of the loops that |V2| > q1+k is estimated
by

q(1+k) · 2(g − 2)!q(1−r)(g−2) = 2(g − 2)!q2r,

and the number of the loops that |V1| > q
(g−1)+(g+1)k

g is estimated by

q
(g−1)+(g+1)k

g · (g − 1)!q(1−r)(g−1) = (g − 1)!q2r.

Since the cost of computing Jacobian v = αD1+βD2 is O(g2(log q)2) and
the cost of judging whether v is potentially smooth or not is O(g2(log q)3),
the total cost of this part is estimated by

O(g2(g − 1)!(log q)3q2r).

Here, we will estimate the required storage. Note that the bit-length of
one relative smooth point is 2g log q. So, the storage for V1, the set of

almost smooth divisors, is O(g q
(g−1)+(g+1)k

g log q) and the storage for

V2, the set of 2-almost smooth divisors, is O(g q(1+k) log q). From lemma

3, we have g q(1+k) log q >> g q
(g−1)+(g+1)k

g log q. So the total required
storage can be estimated by

O(g q(1+k) log q).

5 Elimination of large prime (Framework)

Let E be a set of almost smooth divisors, and let F be a set of 2-almost
smooth divisors or a set of almost smooth divisors. Note that element
e ∈ E and f ∈ F are written by

e = n
(e)
P1

P1 +
X
P∈B

n
(e)
P P,

f = n
(f)
P2

P2(+n
(f)
P3

P3) +
X
P∈B

n
(f)
P P.

Put sup(e) := {P1} and sup(f) := {P2, (P3)}. When P ∈ sup(e)∩sup(f),
put

φ(e, f, P) := n(f)
p e− n(e)

p f.

Trivially, φ(e, f, P) is almost smooth divisor, if F is a set of 2-almost
smooth divisors and φ(e, f, P) is smooth divisor, if F is a set of almost
smooth divisors and e is not of the form constant times f .
Let E be a set of almost smooth divisors and F be a a set of 2-almost
smooth divisors. So, we construct the set of almost smooth divisors E′

and a set of 2-almost smooth divisors F ′. Roughly speaking, E′ is a
maximal subset of

∪φ(e, f, P), (e ∈ E, f ∈ F, P ∈ sup(e) ∩ sup(f) s.t. e 6= Const× f),

satisfying that E′ does not contains both of the elements of the form
φ(e1, f, P1) and φ(e2, f, P2), and

F ′ = F \ ∪f,

where f ∈ F satisfies sup(e) ∩ sup(f) 6= ∅ for some e ∈ E. In our
aim(which is needed to Lemma 9 in order to get rid of the possibil-
ity of trivial relations), E′ must not contains both of the elements of the
form φ(e1, f, P1) and φ(e2, f, P2). E′ is constructed as a set that such
elements are omitted.

Definition 9 Further, put

E ¯ F := (E′, F ′), (E ¯ F)[1] := E′, (E ¯ F)[2] := F ′.

We will estimate the size of E ¯ F .

Lemma 5 Let E be a set of randomly choosen almost smooth divisors
and F be a set of randomly choosen 2-almost smooth divisors. Assume
|E| << q < |F |. The size of (E ¯ F)[1] is estimated by

|(E ¯ F)[1]| .
=

2|E||F |
|P \B|

.
=

4|E||F |
q

.

Further, |(E ¯ F)[2]| = |F | \ |(E ¯ F)[1]|.

Proof. Let e ∈ E, f ∈ F be randomly chosen elements. Put P := sup(e).
Since F is a set of 2-almost smooth divisors, the probability that P ∈
sup(f) is 2

|P\B|
.
= 4

q
and the size is estimated by 2

|P\B| |E||F | = 4
q
×|E||F |.

2nd formula is trivial.

Algorithm 3 Elimination of Large primes
Input: E almost smooth divisors, F 2-almost smooth divisors
Output: E′ almost smooth divisors, F ′ 2-almostsmooth divisors
1: set P\B = {R1, R2, .., R|P\B|} (pre-computation)
2: for i = 1, 2, .., |P\B| do
3: st[i] ← {}
4: od
5: for all e ∈ E do
6: P = sup(e)
7: Compute i s.t. P = Ri

8: st[i] ← st[i] ∪ {e}
9: od

10: E′ ← {}, F ′ ←− F
11: for all f ∈ F do
12: for all P ∈ sup(f) do
13: Compute i s.t. P = Ri

14: if st[i] 6= ∅ then
15: for all e ∈ st[i] s.t. e 6= Const× f do
16: E′ ← E′ ∪ {φ(e, f, P)}, F ′ ← F ′ \ {f}
17: break
18: break (return to the loop of next f ∈ F)
19: od
20: end if
21: od
22: od
23: return E′, F ′

We will estimate the cost and the storage for computing E ¯ F .

Lemma 6 Put c1 := max{l(e)|e ∈ E} and c2 := max{l(f)|f ∈ F}.
Assume that |E| << q. Then the cost of computing E ¯ F is

O(c1(log q)2|E|) + O((log q)2|F |) + O((c1 + c2)(log q)2|E||F |/q)

. and the required storage is

O(c1 log q|E|) + O((c1 + c2) log q|E||F |/q).

Proof. The required storage for st[i] is O(c1 log q |E|) and the required
storage for E′ is O((c1 + c2) log q |E||F |/q), since |E′| .

= |E||F |/q and
max{l(v)|v ∈ E′} = c1 + c2 from lemma 2.
Note that the cost of the routine ”Computing index i” is log q log |P\B| =
O((log q)2). Also note that |E ¯ F | = O(|E||F |/q) and remark that
the probability of st[i] 6= ∅ is very small, since|E| << q. Thus, we see
that the cost of the 1st loop is O(c1(log q)2|E|), the cost of the part
”Computing index i” of the 2nd loop is O((log q)2|F |), and the cost of
the part ”Computing the elements of E′ and F ′” of the 2nd loop is
O((c1 + c2)(log q)2|E||F |/q) from lemma 2.

Now, let E be a set of almost smooth divisors. We will construct E′ a set
of smooth divisors from E. Roughly speaking, E′ is a maximal subset of

∪φ(e1, e2, P)

where e1, e2 ∈ E, e1 6= Const ×e2, and P = sup(e1)∩sup(e2) such that
it does not contains any 2 elements of the form φ(e, f1, P1), φ(e, f2, P2),
φ(f3, e, P3) and φ(f4, e, P4). Note that if e1, e2 ∈ E are used once, e1, e2

are never used to the construction of E′.

Algorithm 4 Elimination of Large primes
Input: E almost smooth divisors
Output: E′ smooth divisors
1: set P\B = {R1, R2, .., R|P\B|} (pre-computation)
2: for i = 1, 2, .., |P\B| do
3: st[i] ← {}
4: od
5: for all e ∈ E do
6: P = sup(e)
7: Compute i s.t. P = Ri

8: st[i] ← st[i] ∪ {e}
9: od

10: E′ ← {}
11: for all f ∈ E do
12: P:=sup(f)
13: Compute i s.t. P = Ri

14: if st[i] 6= ∅ then
15: for all e ∈ st[i] s.t. e 6= Const× f do
16: E′ ← E′ ∪ {φ(e, f, P)}, st[i] ← st[i] \ {e, f}
17: break (return to the loop of next f ∈ E)
18: od
19: end if
20: od
21: od
22: return E′

Definition 10 Further, put

(E ¯ E)[1] := E′.

Lemma 7 Let E be a set of randomly choosen almost smooth divisors.
Assume |E| << q. The size of (E ¯ E)[1] is estimated by

|(E ¯ E)[1]| .
=

|E|2
2|P \B|

.
=
|E|2

q
.

Further, put c1 := max{l(e)|e ∈ E}, then the cost of computing (E¯E)[1]
is

O(c1(log q)2|E|) + O(c1(log q)2|E|2/q),

and the required storage is

O(c1 log q|E|) + O(c1 log q|E|2/q).

Proof. Let e1, e2 ∈ E be randomly chosen elements. Put P := sup(e1).
The probability that P ∈ sup(e2) is 1

|P\B|
.
= 2

q
and the size is estimated

by
`|E|

2

´× prob. = 1
2|P\B| |E|2 = 1

q
× |E|2. Cost estimations are similarly

done by the previous case.

6 Computing Hm

In this section, we will construct Hm a set of almost smooth divisors
|Hm| > q(1+r)/2.

Algorithm 5 Computing Hm

Input: V1 a set of almost smooth divisors s.t. |V1| > q
(g−1)+(g+1)k

g , V2 a set of 2-almost

smooth divisors s.t. |V2| > q(1+k)

Output: Integer m > 0 and H1, H2,...,Hm sets of almost smooth divisors s.t. |Hm| >
q(1+r)/2

1: H1 ← V1, V2,1 ← V2

2: i ← 1
3: repeat
4: i + +
5: (Hi, V2,i) ← Hi−1 ¯ V2,i−1,

6: until |Hi| > q(1+r)/2

7: m ← i
8: return m,H1, H2, ..., Hm

Since Hi and V2,i are not randomly choosen sets. By this mean, Lemma
5 can not be used for the estimation of |Hi| and |V2,i|. However, in the
appendix, we will show that the size estimation of Lemma 5 is valid by
a computer experiment. So, we will use this size estimation of |Hi| and
|V2,i| as a heuristics. From lemma 5, the size of Hi is estimated by

|Hi| .
= |H1| × (qk)i−1 = q

(g−1)+(g i+1)k
g .

So, solving the equation (g−1)+(g i+1)k
g

= (1 + r(k))/2 for i, we have the

following.

Lemma 8 m is estimated by

1− k

2gk
.

Further, we will assume m = O(1
gk

). Note that {l(v)|v ∈ ∪i≤mHi} ≤ mg.

From lemma 6, the cost for computing Hm is

m× (O((log q)2q(1+k)) + O(mg(log q)2q(1+r)/2)))

and the required storage is

O(mg q(1+r)/2 log q).

7 Computing H

In this section, we compute H a set of smooth divisors for |H| > qr.

Algorithm 6 Computing H

Input: H1,H2,...,Hm sets of almost smooth divisors s.t. |Hm| > q(1+r)/2

Output: H a set of smooth divisors s.t. |H| > qr.
1: Put H ′ := ∪m

i=1Hi

2: H ← (H ′ ¯H ′)[1]
3: return H

From this construction, note that |H ′| > q(1+r)/2. Since H ′ is not a ran-
domly choosen set. By this mean, the size estimation using Lemma 5 is
invalid. However, by a computer experiment in appendix, this estimation
turns to be valid and we use this estimation as heuristics. From lemma
7, the size of H is estimated by

|H| = |H ′|2/q ≥ qr.

Note that {l(v)|v ∈ ∪i≤mH} ≤ 2mg. From lemma 7, the cost for com-
puting H is

O((log q)2q(1+r)/2) + O(mg(log q)2qr)

and the required storage is

O(mg log q q(1+r)/2).

8 Two ways representation of h ∈ H

An element h ∈ H is written by the form

h =
X
P∈B

a
(h)
P D(P),

since it is a smooth divisor. Moreover, from its construction, we see easily
that

l(h) = #{P ∈ B | a(h)
P 6= 0} ≤ 2mg.

Set B = {R1, R2, ..., R|B|}.

Definition 11

Put vec(h) := (a
(h)
R1

, a
(h)
R2

, ..., a
(h)
R|B|).

The computation of h(= vec(h)) means the set of pairs {(a(h)
Ri

, Ri)} for

non-zero a
(h)
Ri

. Note that the required storage for one h is O(m g log q).
On the other hands, from its construction, h is written by linear sum of
at most 2m elements of V1 ∪ V2. i.e.

h =
X

v∈V1∪V2

b(h)
v v, #{v | b(h)

v 6= 0} ≤ 2m.

Definition 12

Put v(h) := {(b(h)
v , v) | b(h)

v 6= 0}.

Note that the required storage for one v(h) is O(m log q).
Remark By little modifying the algorithm, we can obtain both repre-
sentations of h of the forms vec(h) and v(h). (The order of the cost and
the order of the storage for computing H is essentially the same.)
Further, we will assume that the computations of vec(h) and v(h) for
h ∈ H are done.

9 Linear algebra

In this section, we will solve the linear algebra and finding a linear rela-
tion of H.

Algorithm 7 Linear algebra
Input: H a set of smooth divisors such that |H| > qr

Output: Integers {γh}h∈H modulo |Jq| s.t.
P

h∈H γhh ≡ 0 mod |Jq|
1: Set H = {h1, h2, ..., h|H|}
2: Set matrix M = (tvec(h1),

t vec(h2), ...,
t vec(h|H|))

3: Solve linear algebra of M and compute (γ1, γ2, ..., γ|H|) such that
P|H|

i=1 γivec(hi) =
0

4: return {γi}

Note that the elements of matrix is integers modulo |Jq| .
= qg. So the

cost of an elementary operation modulo Jq is O(g2(log q)2).
M is a sparse matrix of the size qr×qr. Note that the number of non-zero
elements in one column is 2mg. So, using [4] [5], we can compute { γi}.
Its cost is

O(g2(log q)2 · 2mg · qrqr) = O(mg3(log q)2q2r)

and the required storage is

O(log(qg) m g · qr) = O(m g2 qr log q).

(The required storage for sparse linear algebra is essentially the storage
for non-zero data. Note that the bit length of integer modulo |Jq| is
log(qg), the number of nonzero elements of one row is mg.)

10 Computing sv

Remember that each element h ∈ H is of the form h =
P

v∈V1∪V2
b
(h)
v v.

In the previous section, we found {γh} such that
P

h∈H γhh ≡ 0 mod
|Jq|. So, put

sv :=
X

h∈H

γhb(h)
v mod |Jq| for all v ∈ V1 ∪ V2

and we have X
v∈V1∪V2

svv ≡ 0 mod |Jq|.

Algorithm 8 Computing sv

Input: V1,V2,H,{γh}h∈H s.t.
P

h∈H γhh ≡ 0
Output: {sv}v∈V1∪V2
1: for all v ∈ V1 ∪ V2 do
2: sv ← 0
3: od
4: for all h ∈ H do
5: for all v ∈ V1 ∪ V2 s.t b

(h)
v 6= 0 do

6: sv ← sv + γhb
(h)
v

7: od
8: od
9: return {sv}

The cost of this part is

O(g q1+k log q) + O(m g2 (log q)2q(1+r)/2)

and the storage is
O(g q1+k log q).

Let h ∈ H such that rh 6= 0, and v ∈ v2(h).

Lemma 9 {sv}v∈V1∪V2 contains at least one non-zero element.

Proof. Put v2(h) := {v ∈ V2 | b(h)
v 6= 0} for h ∈ H, and G := {h ∈

H | rh 6= 0}. So, we easily have sv =
P

h∈G rhb
(h)
v . h ∈ H is written by

the form φ(h1, h2, P) where h1 ∈ Hi1 and h2 ∈ Hi2 . So, put d(h) :=
max(i1, i2). Take h′ be an element of G whose d = d(h′) is maximal.

Then there are some v′ ∈ V2,d−1 \ V2,d such that bh′
v′ 6= 0. Note that v′ is

first used to construct Hd and v′ is not used to construct any elements
h ∈ G \ {h′}. So, for any h ∈ G \ {h′}, v′ 6∈ v2(h). Then we have

sv′ =
P

h∈G rhb
(h)
v = rh′b

(h′)
v′ 6= 0.

11 Finding discrete log

In the previous section, we found {sv} such that
P

svv ≡ 0 mod |Jq|. In
the part 2 of the algorithm, we have computed (αv, βv) such that

v = αvD1 + βvD2.

So, we have

X
v∈V1∪V2

sv(αvD1+βvD2) = (
X

v∈V1∪V2

svαv)D1+(
X

v∈V1∪V2

svβv)D2 ≡ 0. mod |Jq|

So,−(
P

v∈V1∪V2
svαv)/(

P
v∈V1∪V2

svβv) mod |Jq| is required discrete log.

Since {sv} contains non-zero elements (Lemma 9), the probability
P

v∈V1∪V2
svβv) =

0 mod |Jq| is 1/q and can be omitted.

Algorithm 9 Computing λ

Input: V1,V2,{αv, βv}, {sv}
Output: Integer λ mod |Jq| s.t. D1 = λD2

1: return −(
P

v∈V1∪V2
svαv)/(

P
v∈V1∪V2

svβv) mod |Jq|

Note that the cost of this part is O(g2 q1+k (log q)2).

12 Cost estimation

In this section, we will estimate the cost and the required storage of
whole algorithm under the assumption of

k =
1

log q
.

First, remember that m = O(1
gk

) = O(log q
g

). By a direct computation,

we have

r = r(k) =
g − 1 + k

g
= 1− 1

g
+

1

g log q
,

and

q2r = q
2− 2

g × exp(
2

g
) = O(q

2− 2
g).

From our cost estimation, the cost of the routine except part 2 and part
5 is written by the form

O(ga (log q)b qc) a, b ≤ 4, c ≤ 1 + k.

On the other hands, the cost of the routine part 2 and part 5 is written
by

O(g2(g − 1)!(log q)3q2r) and O(mg3 (log q)2q2r).

From lemma 3, we see 1 + k < 2r and the cost of the whole parts can be
estimated by

O(g2(g − 1)!(log q)3 q2r) = O(g2(g − 1)!(log q)3q
2− 2

g).

Similarly, we see that the required storage (dominant part is part 2 and
part 7, since 1 + k > 1 > (1 + r)/2 from lemma 3) is

O(g q1+k log q) = O(g q1+k log q) = O(g q exp(1) log q) = O(g q log q).

13 Conclusion

In ASIACRYPT2003, Thériault presented a variant of index calculus for
the Jacobian of hyperelliptic curve of small genus, using almost smooth
divisors. Here, we improve Thériault’s result, using 2-almost divisors and
propose an attack for DLP of the Jacobian of hyperelliptic curves of small

genus, which works O(q
2− 2

g
+ε

) running time.

14 Appendix

In the previous version of this paper is rejected for some conference
because of a negative comment of some referee, which says ” The result
itself is not surprising, given Theriault’s approach and analysis. What is
surprising is the rather limited combinations that are created among the
2 almost smooth divisors: as far as I can tell longer chains of 2 almost
smooth divisors are not created. This makes the analysis much easier. But
I imagine that in actual implementation a huge speedup can be obtained by
approaching the combinations as was done in QS and NFS. The approach
also begs the question what number of large primes is optimal, a question
that is not raised in the present paper”. Algorithm for using so called large
prime is applied to factorization. In the factorization case, this technique
contribute to speeding up of computation, but does not contribute to
decreasing its complexity. The distribution of large primes being very
one-sided may be the reason that its complexity does not decreasing
(longer chains of 2-almost smooth divisors are not created.). In our case,
the distribution of large primes is trivially unique and the situation is
different from factorization case. Further, we will show that longer chains
of 2-almost smooth divisors are created and that the size estimation of
Lemma 5 is valid by a computer experiment.
For simplicity, we will do the computer simulation as follows.
1. Using the set {0, 1, 2, ..., Q − 1} in stead of the set of large primes
P \B.
2. Using the randomly choosen N1 elements {v1[i] | 0 ≤ i < N1} of
{0, 1, 2, ..., Q− 1} in stead of V1(= H1).
3. Using the pairs of randomly choosen N elements {(v21[i], v22[i]) | 0 ≤
i < N} of {0, 1, 2, ..., Q− 1} in stead of V2(= V2,1).
So, starting from parameter N = 30000000, Q = 25000000, N1 = 3000,
we have the following estimation. So, we confirm that longer chains of
2-almost smooth divisors are created and the size estimation of lemma
5 is valid. Starting from another parameter, we can also confirm this
validity.

Simulation Program

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
/* N maximam data size, number of V2 (ie. 2LP) */
#define N (30000000)
/* Q number of LP */
#define Q (25000000)
/* N1 number of V1 (ie. 1LP) */
#define N1 3000

int cmp(const void *a, const void *b){
int aa,bb;
aa=*(int *)a;
bb=*(int *)b;

if(aa>bb) return 1; else if (aa<bb) return -1; else return 0;
}

void arraycopy(int *h1, int *h2,int n, int m){
int i;
for(i=0;i<n;i++) h1[i+m]=h2[i];

return;
}

main(){
int *v21,*v22,*h,*htmp,*v1,*hd,*p;
int i,j,n,n1,nd,nold,n1old,ndold,m;
printf("size of int %ld \n",sizeof(int));
if (sizeof(int)<4) {printf("sorry size of int must be >=4");exit(0);}
v1=(int *)malloc(N1*sizeof(int)); // V1={ v1[i] | i=0..N1-1 }
v21=(int *)malloc(N*sizeof(int)); // V2={(v21[i],v22[i])| i=0..N-1}
v22=(int *)malloc(N*sizeof(int));
h=(int *)malloc(N*sizeof(int)); // for the stack for Hj
htmp=(int *)malloc(N*sizeof(int)); // temporary stack cp from h
hd=(int *)malloc(N*sizeof(int)); // for the stack for \cup Hj

srand(87945); // for debug; use srand((unsigned)time(NULL)); */
printf("Check RAND_MAX=%ld > Q=%ld \n",RAND_MAX,Q);

// make data of V2={(v21[i],v22[i])| i=0..N-1}
for(i=0;i<N;i++){v21[i]=rand()%Q; v22[i]=rand()%Q;}

// make data of V1={ v1[i] | i=0..N1-1 }
for(i=0;i<N1;i++){ v1[i]=rand()%Q;}

n=N; n1=N1; nd=N1; // n=|Hj|, n1=|V_{2,j}|, nd=\sum_{i=1}^j |Hi|
arraycopy(h,v1,n1,0);
printf("j=1 |Hj|=%ld |V2j|=%ld \n", n1,n);
for(j=2;j<=10;j++){

nold=n; n1old=n1; ndold=nd;
qsort(h,n1,sizeof(int),cmp);
arraycopy(htmp,h,n1,0);
m=-1;
for(i=0;i<N;i++){

if(v22[i]==Q || v21[i]==Q) continue;
p=(int *)bsearch(&(v21[i]),htmp,n1,sizeof(int),cmp);
if(p!=NULL){ m++; h[m]=v22[i]; v22[i]=v21[i]=Q;continue;}
p=(int *)bsearch(&(v22[i]),htmp,n1,sizeof(int),cmp);
if(p!=NULL){ m++; h[m]=v21[i]; v22[i]=v21[i]=Q;}
}

n1=m; nd+=m; n-=m;
arraycopy(hd,h,m,ndold);
printf("j=%ld |Hj|=%ld (expected value)=%lf ", j,n1,((double)nold/Q*2*n1old));
printf("|V2j|=%ld sum_{k=1}^j Hk=%ld \n", n, nd);
if (nd>Q/80) break; // we have surfficient smooth elements
}

qsort(hd,nd,sizeof(int),cmp);
m=0;
for(i=0;i<=nd-2;i++){

j=0;
while(hd[i]==hd[i+1] && i<=nd-2){i++;j++;}
m=m+(j+1)/2;
}

// Note that if nd/n is large (for example >0.05),
// |H| must be smaller than expected value from construction.
printf("|H|=%ld (expected value)=%lf \n",m,((double)nd*nd/2/Q));
free(v1);free(v21); free(v22); free(h); free(htmp);free(hd);

}

Estimation of |Hj |
j |Hj | expcted value of |Hj | |V2,j | | ∪k

j=1 Hk|
1 3000 ——- 30000000 3000
2 7037 7200.000000 29992963 10037
3 16982 16884.838450 29975981 27019
4 40874 40724.168747 29935107 67893
5 98037 97885.405081 29837070 165930
6 233289 234010.946527 29603781 399219

Estimation of |H|
|H| = 3362, expected value of |H| = 3187.516199.

References

1. N. Thériault, Index calculus attack for hyperelliptic curves of small
genus, ASIACRYPT2003, LNCS 2894, Springer-Verlag, 2003, pp. 75–
92.

2. A. Enge, P. Gaudry, A general framework for subexponential discrete
logarithm algorithms, Acta Arith., 102, no. 1, pp. 83–103,2002.

3. P.Gaudry, An algorithm for solving the discrete log problem on hyper-
elliptic curves, Eurocrypt 2000, LNCS 1807, Springer-Verlag, 2000, pp.
19–34.

4. B. A. LaMacchia, A. M. Odlyzko, Solving large sparse linear systems
over finite fields, Crypto ’90, LNCS 537, Springer-Verlag, 1990, pp.
109–133.

5. D. H. Wiedemann, Solving sparse linear equations over finite fields,
IEEE Trans. Inform. Theory, IT-32, no.1, pp.54–62, 1986.

Postscript: Gaudry, and Thomé, 1 propose the similar method using
graph theory independently.

Diem 2 propose the index culculas to the Jacobian of general plane
curves.

1 A double large prime variation for small genus hyperelliptic index calculus, preprint,
http://eprint.iacr.org/2004/153/ ,2004.

2 Index Calculus in Class Groups of Plane Curves of Small Degree, preprint, http:
//eprint.iacr.org/2005/119 ,2005.

