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Abstract

In CRYPTO2000, Okamoto, Tanaka and Uchiyama [2] first proposed the
concept of quantum public key cryptosystems (QPKC) and a concrete prac-
tical scheme to realize it. One of it’s important ideas is to employ the ring of
integers of an algebraic number field. This talk is about the implementation
of three processes, namely, key generation, encryption and decryption of the
realized QPKC on our system NZMATH [1] for number theory. In particular,
we experimented about the efficiency of key generation in the case of some
quadratic fields. In the process of key generation, since the discrete logarithm
problem (DLP) is settled in polynomial time by quantum computers, we only
take into account of the efficiency of other parts. As a result of our experi-
ment, we have found that the order of generation key parameters is important,
and we propose a different order from the original one so that key generation
is much more efficient. We also introduce another new kind of key generation
without changing the process of encryption or decryption.

1 Outline of the QPKC

The QPKC uses a quantum turing machine (QTM). Many public key cryptosystems
used today are broken in polynomial time if a quantum computer (QC) is realized.
So, it is important to study the QPKC assuming the existence of a QC.
Basic points of the QPKC are as follows:
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• The DLP is solvable in polynomial time by the QTM using Shor’s algorithm [3].

• The QPKC generates key parameters for Knapsack-type cryptosystems by
solving the DLP.

• Knapsack-type cryptosystems are based on a NP-hard problem.

• That NP-hard problem is thought to be still hard to solve in probabilistic
polynomial time by the QTM.

• The QPKC need the QTM only for key generation, but we can encrypt and
decrypt without any QTM.

2 Algorithm for quadratic fields

Let K = Q(
√

θ) be a quadratic field with a square-free θ ∈ Z and OK be the ring
of integers of K. Then

OK = Z[ω] with ω =

{√
θ if θ ≡ 2, 3 (mod 4),

1+
√

θ
2

otherwise.

Let n, k ∈ Z with 0 < k ≤ n. We first give the original algorithms.

Algorithm 1 (Key Generation) Given (n, k, θ), this algorithm outputs a private
key [θ, g, d, p, S] and a public key [n, k, b] by the following steps.

1. Choose a random prime ideal (p) of degree 2 from OK with p ∈ Z. (Actually,
it is difficult to obtain a proper p satisfying condition (1) in step 4 below.)

2. Choose a subset S = {S1, · · · , Sn} of n elements of A, where

A =
{

α + βω | α, β ∈ Z, −p

2
≤ α, β ≤ p

2

}

.

3. If the absolute norms N (S1), · · · ,N (Sn) are not pairwise coprime, then repeat
from step 2.

4. If the following condition (1) is not satisfied, then repeat from step 2 for a
certain number of times, for example nk times, after that repeat from step 1
again.
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For any subset {Si1, Si2 , · · · , Sik} of k elements of S,

k
∏

j=1

Sij ∈ A. (1)

Especially in case K is imaginary, we employ a sufficient condition of (1),
namely

k
∏

j=1

N (Sij) <

{

p2

4
if θ ≡ 2, 3 (mod 4),

(p−1)2θ

4(θ−1)
otherwise.

(2)

5. Find a random g ∈ OK such that 〈g mod (p)〉 = (OK/(p))×.

Choose a random d ∈ Z with 1 ≤ d ≤ p2 − 1.

For each i from 1 to n, do the following:

Compute ai such that gai ≡ Si (mod (p)) using Shor’s algorithm.

Compute bi ≡ ai + d (mod p2 − 1).

And set b := [b1, · · · , bn].

Then output the private key [θ, g, d, p, S] and the public key [n, k, b].

Remark. This algorithm may fail in step 3 or 4 and will not succeed to get proper
[p, S]. We shall discuss this problem in the next section.

Algorithm 2 (Encryption) Given a public key [n, k, b] and a plaintext M of bit
length blog2

(

n

k

)

c, this algorithm outputs the ciphertext c.

1. Encode M to m = (m1, m2, · · · , mn) of Hamming weight k as follows:

(a) Set l ← k.

(b) For i from 1 to n do the following:

If M ≥
(

n−i

l

)

, then set mi ← 1, M ←M −
(

n−i

l

)

, l ← l − 1.
Otherwise, set mi ← 0.

2. Compute and output the ciphertext

c =

n
∑

i=1

bimi.
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Algorithm 3 (Decryption) Givien a ciphertext c, the private key [θ, g, d, p, S]
and the public key [n, k], this algorithm outputs the plaintext M .

1. Compute r ≡ c− kd (mod p2 − 1).

2. Compute u ≡ gr (mod (p)).

3. Find encoded message m as follows:

If Si | u, which is verified by N (Si) | N (u), then set mi ← 1.

Otherwise, set mi ← 0.

4. Decode m to the plaintext M as follows and output M :

(a) Set M ← 0, l ← k.

(b) For i from 1 to n, do the following:

If mi ← 1, then set M ←M +
(

n−i

l

)

and l ← l − 1.

3 Implementation on NZMATH

We have implemented Algorithm 1 as generate.para on NZMATH. We give two nu-
merical examples for (n, k, θ) = (6, 2,−3) and (7, 2, 5). The integer θ is displayed
by m below.

>>> generate.para_orig(8,3,-3)

Execution Time(sel)= 0.74

Execution Time(key)= 17.19

Generate Keys(pub) = [[-3, [960, 1456], 648674, 2081,

[[-8, -1], [-1, -5], [0, 4], [3, -5], [-6, -5], [-2, -7], [1, 6], [-3, -7]]]

Generate Keys(pub) =

[8, 3, [4019930, 603640, 3416346, 1448597, 2796778, 1041704, 3096802, 1188333]

>>> generate.para_orig(8,3,5)

Execution time(sel)= 0.41

Execution Time(key)= 2.82

Generate Keys(sel) = [[5, [712, 335], 37290, 877,

[[-5, 4], [-6, 1], [1, -4], [5, -6], [-1, 8], [-2, -7], [2, 1], [0, 3]]]

Generate Keys(pub) =

[8, 3, [200313, 223704, 593455, 349652, 152156, 102632, 651791, 279080]]
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We have also implemented Algorithm 2 and Algorithm 3 on NZMATH. We give two
numerical examples of all processes, namely key generation, encryption and decryp-
tion, for (n, k, θ, M) = (10, 3,−3, 48).

>>> ex.QPKC_orig(10,3,-3,48)

Execution time(sel)= 1.33

Execution Time(key)= 67.34

Input Parameter = [10, 3, -3, 48]

Generate Keys(pri) = [-3, [460, 2655], 4850724, 3671,

[[8, 4], [3, 8], [-9, -5], [-5, 6], [-3, 0],

[6, 1], [4, 5], [1, 8], [-3, 4], [-7, -6]]]

Generate Keys(pub) =

[10, 3, [1472702, 5403077, 2160433, 9909274, 8746716,

11630355, 9914031, 1770015, 11028303, 267935]]

Ciphertext = 20821180

Decoded Message = 48

Execution Time = 67.34

Remark. By the examples above, we can ignore the time of execution spent in
the processes of encryption and decryption.

4 Result of experiments

For each (n, k, θ), we experimented key generation ten times in certain quadratic
fields, and computed the average of it’s execution time. We used a slightly refined
version of Algorithm 1 for experiment because it is very hard to get much data by
the original one. Hardware and software status is

CPU: Celeron 2GHz,

Memory: 1024MB,

Programming Language: Python.

When n, k are large, the time required in steps 1–4 increases, so it is hard to complete
the choice of key. We list tables of the cases for small n, k.
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Table 1.
Input parameter, p’s value and execution time in imaginary quadratic fields.

[n, k, θ] p’s value steps 1–4 steps 1–5

[4, 2, -1] 37 0.015 0.025
[4, 2, -2] 56 0.021 0.042
[4, 2, -3] 38 0.013 0.025
[4, 2, -5] 139 0.045 0.10

[6, 2, -1] 112 0.050 0.12
[6, 2, -2] 369 0.135 0.68
[6, 2, -3] 154 0.065 0.17
[6, 2, -5] 1359 0.427 7.04

[7, 3, -1] 743 0.254 2.134
[7, 3, -2] 1050 0.342 4.948
[7, 3, -3] 330 0.13 0.516
[7, 3, -5] 4073 1.24 60.11

[8, 3, -1] 1359 0.482 14.514
[8, 3, -2] 11843 2.992 ×
[8, 3, -3] 491 0.184 1.324
[8, 3, -5] 99311 20.096 ×
[10, 4, -1] 18641 5.382 ×
[10, 4, -2] 209942 49.663 ×
[10, 4, -3] 8558 2.827 ×
[10, 4, -5] 3446752 643.78 ×
[12, 4, -1] 727709 164.736 ×
[12, 4, -2] – × ×
[12, 4, -3] 21174 6.422 ×
[12, 4, -5] – × ×
[15, 5, -1] – × ×
[15, 5, -2] – × ×
[15, 5, -3] 893169 245.288 ×
[15, 5, -5] – × ×
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Table 2.
Input parameter, p’s value and execution time in real quadratic fields.

[n, k, θ] p’s value steps 1–4 steps 1–5

[4, 2, 1] 87 0.02 0.02
[4, 2, 2] 46 0.02 0.035
[4, 2, 3] 42 0.025 0.04
[4, 2, 5] 35 0.02 0.03

[6, 2, 1] 541 0.27 0.28
[6, 2, 2] 274 0.10 0.32
[6, 2, 3] 300 0.113 0.435
[6, 2, 5] 91 0.042 0.09

[7, 3, 1] 10633 3.27 3.38
[7, 3, 2] 1042 0.346 3.786
[7, 3, 3] 2043 0.592 14.084
[7, 3, 5] 692 0.304 1.9

[8, 3, 1] 32634 17.89 18.19
[8, 3, 2] 1729 0.598 14.832
[8, 3, 3] 2960 0.948 38.536
[8, 3, 5] 1266 0.52 7.026

[10, 4, 1] 1704882 649.72 ×
[10, 4, 2] 6725 17.683 ×
[10, 4, 3] 130511 34.37 ×
[10, 4, 5] 25934 8.505 ×
[12, 4, 1] – × ×
[12, 4, 2] 197465 51.940 ×
[12, 4, 3] 791499 193.720 ×
[12, 4, 5] 818378 22.522 ×
[15, 5, 1] – × ×
[15, 5, 2] – × ×
[15, 5, 3] – × ×
[15, 5, 5] 2534949 694.848 ×
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5 Consideration

5.1 The order of choosing parameters

From the table above, as n is large, the part of choosing key parameters requires
much time before solving the DLP in Algorithm 1. There seems to be two reasons
about that.

The first reason is in step 3.

Proposition 1 ([4]) The probability that random n positive integers are pairwise

coprime is

An =
∏

p:prime

(1− 1

p
)n−1(1 +

n− 1

p
).

By this proposition, we have

A10 = 8.1× 10−5, A50 = 1.7× 10−34.

From this, the probability that almost randomly taken n integers N (Si) are pairwise
coprime is very small as n is large. This means that we may not be able to pass
step 3 even after a great deal of trials.

The second reason is in step 4. Since the additional condition (1), or (2) in case K is
imaginary, must also hold for pairwise coprime N (Si), it is further hard to find out
such Si when p is small. Therefore, we first take an appropriate set S of n elements
with pairwise coprime absolute norms, and determine p satisfying condition (1) after
that. Then it does not take much time to pass step 4.
We now formula a modification of Algorithm 1 as follows:

Algorithm 4 (Modified Key Generation) Given (n, k, θ), this algorithm out-
puts a private key [θ, g, d, p, S] and a public key [n, k, b] by the following steps.

1. Choose random n elements from
{

α + βω | α, β ∈ Z, − `

2
≤ α, β ≤ `

2

}

,

where ` ∈ Z is a suitably choosen number for example about 2n.

2. If N (S1), · · · ,N (Sn) are not pairwise coprime, go to step 1.

8



3. Choose a rational prime number p so that (p) is a prime ideal of OK and
satisfing codition (1) or (2).

4. Same as step 5 [DLP part] in Algorithm 1.

Doing like this, we have succeeded in making key generation faster than the original
one except the part of the DLP. But, the p’s value becomes large, therefore much
more time is indeed necessary to solve the DLP.

We now compare Algorithm 4 with Algorithm 1 about key generation except the
part of DLP.

Table 3. Input parameter, p’s value, execution time of steps 1 – 4 of Algorithm 1
and steps 1 – 3 of Algorithm 4 in some quadratic fields.

Algorithm 1 Algorithm 4
[n, k, θ] p’s value Time [n, k, θ] p’s value Time

[4, 2, -1] 19 0.008 [4, 2, -1] 39 0.002
[4, 2, -3] 21 0.006 [4, 2, -3] 49 0.00
[4, 2, 3] 51 0.024 [4, 2, 3] 85 0.002
[4, 2, 5] 38 0.02 [4, 2, 5] 39 0.002

[8, 3, - 1] 926 0.312 [8, 3, -1] 1462 0.312
[8, 3, -3] 615 0.232 [8, 3, -3] 2144 0.066
[8, 3, 3] 4163 1.222 [8, 3, 3] 3275 0.204
[8, 3, 5] 1222 0.482 [8, 3, 5] 1836 0.024

[8, 4, -1] 1710 0.598 [8, 4, -1] 9248 0.152
[8, 4, -3] 1704 0.606 [8, 4, -3] 16555 0.03
[8, 4, 3] 18944 5.152 [8, 4, 3] 23610 0.206
[8, 4, 5] 6326 2.498 [8, 4, 5] 18961 0.018

[12, 4, -1] 777395 179.782 [12, 4, -1] 45724 126.518
[12, 4, -3] 53202 14.676 [12, 4, -3] 78710 6.392
[12, 4, 3] 510317 123.484 [12, 4, 3] 279084 99.412
[12, 4, 5] 72517 20.938 [12, 4, 5] 169405 0.912

[12, 5, -1] 908726 224.13 [12, 5, -1] 472096 48.758
[12, 5, -3] 119430 34.232 [12, 5, -3] 1386155 4.132
[12, 5, 3] 3804643 837.79 [12, 5, 3] 5766807 54.058
[12, 5, 5] 631013 155.54 [12, 5, 5] 3411517 1.246
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By the table above, we can numerically verify that, except the part of DLP, Algo-
rithm 4 is faster than Algorithm 1 when (n, k) are big. Hence we have solved the
second problem.

5.2 Another Key Generation

When n is large, the probability that the norm of random n elements are pairwise
coprime is very small as we have seen in Proposition 1. The first problem is not
solved and it still takes much time to pass step 1 even by Algorithm 4. The condition
of step 2 in Algorithm 4 can be changed choosing n random primes which are not
associate. So, we choose primes using the following well-known fact.

Proposition 2 Let K be an algebraic number field and OK be the ring of integers

of K . If p ∈ OK and the absolute norm N (p) is a rational prime, then p is a prime

in OK .

Algorithm 5 (Another Key Generation) Given (n, k, θ), this algorithm out-
puts a private key [θ, g, d, p, S] and a public key [n, k, b] by the following steps.

1. Compute the set of prime elements of degree 1 from

{

α + βω | − `

2
≤ α, β ≤ `

2

}

,

where ` ∈ Z is a suitably choosen number for example about 2n.

2. Choose n random elements from the set above except associate.

3. Same as step 3 in Algorithm 4.

4. Same as step 4 [DLP part] in Algorithm 4.

We now compare Algorithm 5 with Algorithm 4 about key generation except the
part of DLP.
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Table 4 Input parameter, p’s value and execution time in quadratic fields.

Algorithm 4 Algorithm 5
[n, k, θ] p’s value Time [n, k, θ] p’s value Time

[6, 2, -1] 96 0.012 [6, 2, - 1] 96 0.004
[6, 2, -3] 92 0.01 [6, 2, -3] 92 0.005
[6, 2, 3] 166 0.024 [6, 2, 3] 180 0.086
[6, 2, 5] 111 0.004 [6, 2, 5] 94 0.017

[12, 4, -1] 45724 126.51 [12, 4, -1] 45852 0.018
[12, 4, -3] 78710 6.392 [12, 4, -3] 123176 0.022
[12, 4, 3] 279084 99.412 [12, 4, 3] 189015 0.21
[12, 4, 5] 169405 0.912 [12, 4, 5] 116490 0.066

[18, 6, -1] – × [18, 6, -1] 4919611 0.042
[18, 6, -3] – × [18, 6, -3] 9014287 0.05
[18, 6, 3] – × [18, 6, 3] 54439129 0.724
[18, 6, 5] – × [18, 6, 5] 23400643 0.536

[24, 7, -1] – × [24, 7, -1] 17822592465 0.082
[24, 7, -3] – × [24, 7, - 3] 23398393746 0.097
[24, 7, 3] – × [24, 7, 3] 383543689798 22.808
[24, 7, 5] – × [24, 7, 5] 214851802338 23.274

[30, 8, -1] – × [30, 8, -1] 3233476628170 0.14
[30, 8, -3] – × [30, 8, -3] 4370221432705 0.176
[30, 8, 3] – × [30, 8, 3] – ×
[30, 8, 5] – × [30, 8, 5] – ×

By the table above, we can conclude that Algorithm 5 is clearly faster than Algo-
rithm 4 when (n, k) are big. If we observe that the p’s value also become smaller,
this fact is at least numerically true including the part of DLP.

Remark. It takes, however, much time to pass condition (1) in real quadratic
fields even by Algorithm 5.
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6 Concluding remark

By our implementaion and experiment, we can summarize our results and future
subjects as follows:

• Changing the order of choosing key parameters as above, key genreration is
faster than the original one except the part of the DLP.

• Utilizing prime elements of K, key genreration is further faster than the mod-
ified one. It is a future problem to compare with the original one including
the part of the DLP.

• Although much time is necessary to solve the DLP, if we can once make the
key, then we can use Knapsack-type cryptosystem in a classical TM.

• Similar problems can be considerd for general number fields of higher degree.

• Detailed analysis of the practical security is also a future subject.
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