
On the Distributional Complexity of Boolean

Decision Trees

ChenGuang Liu? and Kazuyuki Tanaka

Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
liu@mail.tains.tohoku.ac.jp, tanaka@math.tohoku.ac.jp

Abstract. Let P (f) be the Las Vegas distributional complexity of func-
tion f , and P ε(f) the Monte Carlo distributional complexity with error
ε ∈ [0, 0.5]. Yao [7] proved that R(f) ≥ P (f) and 2Rε(f) ≥ P 2ε(f),
where R(f) (resp. Rε(f)) is the Las Vegas (resp. Monte Carlo) ran-
domized complexity of function f . In this paper, we prove that for any
uniform alternating Boolean function f on n variables, the Las Vegas dis-

tributional complexity is given as P (f) = Ω(nlog2
1+

√

5
2 ), and the Monte

Carlo distributional complexity P ε(f) ≤ nlog2
1+

√

5
2 for ε ∈ [0.0246, 0.5].

Moreover, we show that P ε(f) = (1 − 2ε)P (f), and the distributional

probability ρ belongs to [
√

7−1

3
,
√

5−1

2
].

1 Introduction

The Boolean decision tree is a natural model for computing a Boolean function
f : {0, 1}n → {0, 1}. In this paper, we focus on a class of Boolean decision
trees of read-once formulae, which are also called uniform alternating Boolean
decision trees (functions) in other papers. Such a tree may be defined as a full
binary AND-OR tree T k

2 , k ≥ 0, where the subscript 2 means “binary”, and k

is the number of rounds (one round: one level AND node followed by one level
OR node). The root (at depth 0) is labeled ∧ (AND node) as are all the internal
nodes with even depth, while all the internal nodes with odd depth are labeled ∨
(OR node). The external nodes are labeled either 0 or 1, and our objective is to
calculate the value of the root, following the operations labeled at each internal
node.

Let A be a deterministic algorithm, and Ip a random input under the distrib-
ution p. By C(A, Ip), we denote the expected number of input variables queried
by A on Ip. The distributional complexity of function f , is defined as the cost of
a best deterministic algorithm computing f for the worst distribution on input:

max
p

min
A

C(A, Ip).

In this paper, two different kinds of deterministic algorithm A will be con-
sidered:
? Corresponding author.



2 Liu and Tanaka

(1) Las Vegas algorithm, which computes the function f always correctly;
(2) Monte Carlo algorithm, which is allowed to output a wrong answer with

some probability ε ∈ [0, 1
2 ].

The distributional complexity of function f according to the Las Vegas algo-
rithm is called the Las Vegas distributional complexity, denoted by P (f), and to
the Monte Carlo algorithm is called the Monte Carlo distributional complexity,
by P ε(f). The Las Vegas distributional complexity can be seen as the Monte
Carlo distributional complexity with zero-error.

The distributional probability of function f is defined as the probability ρ

such that

min
A

C(A, Iρ) = P (f).

Boolean decision trees have been investigated thoroughly in the literature
(See also Yao [7], Karp and Zhang [2], Saks and Wigderson [6], Liu and Tanaka
[3]). For any Boolean decision tree, the distributional complexity is not greater
than the deterministic complexity. Considering two roles of randomness in algo-
rithms, randomness inside the algorithm itself, and randomness on the inputs,
Yao [7] proved that, for any Boolean function f ,

R(f) ≥ P (f), (1)

2Rε(f) ≥ P 2ε(f) for ε ∈ [0,
1

2
]. (2)

where R(f) is the Las Vegas randomized complexity of f , and Rε(f) is the
Monte Carlo randomized complexity with error ε. This is often referred as Yao’s
Principle in the literature. Moreover, Graaf and Wolf [1] advanced quantum
versions of Yao principle.

Hence, to seek the distributional complexity provides us with a useful tech-
nique to establish lower bounds of randomized complexity. This method is quite
useful, because it is usually much easier to analyze deterministic algorithms than
to analyze randomized algorithms. In this paper, we prove that for any uni-
form alternating Boolean function f on n variables, the Las Vegas distributional

complexity P (f) = Ω(nlog2
1+

√

5
2 ), and the Monte Carlo distributional complex-

ity P ε(f) ≤ nlog2
1+

√

5
2 for ε ∈ [0.0246, 0.5]. Moreover, we show that P ε(f) =

(1− 2ε)P (f) for ε ∈ [0, 0.5], and the distributional complexity ρ ∈ [
√

7−1
3 ,

√
5−1
2 ].

2 Las Vegas distributional complexity

We assume that the leaves may receive a 0 with probability p (and a 1 with
probability 1−p) independently from one another. For any Boolean decision tree
T k

2 , we are interested in two quantities. The first quantity is pk, the probability of
returning a 0 at the root. The second quantity is µ

p
k(f), the querying complexity

to evaluate this Boolean decision tree for p ∈ [0, 1]. By the definition of the



AC2005 3

distributional complexity, it is clear that the Las Vegas distributional complexity
Pk(f) is given by max

p∈[0,1]
µ

p
k(f).

By a node k (resp. k), we denote a node labeled ∧ (resp. ∨) at the k-th
round of tree T k

2 . Node 0 is an external node. By pk (resp. pk), we denote the
probability of returning a 0 at the node k (resp. k), and µ

p
k(f) (resp. µ

p
k(f)) the

querying complexity to the node k (resp. k) of the tree for function f . Then we
obtain the recurrence

{

p0 = p

µ
p
0(f) = 1















pk = p2
k−1

µ
p
k(f) = (1 − pk−1) × µ

p
k−1(f) + pk−1 × 2 × µ

p
k−1(f)

= pk−1 × µ
p
k−1(f) + µ

p
k−1(f)

= (pk−1 + 1) × µ
p
k−1(f)







































pk = 1 − (1 − pk)2

= 1 − (1 − p2
k−1)

2

= −p4
k−1 + 2p2

k−1

µ
p
k(f) = pk × µ

p
k(f) + (1 − pk) × 2 × µ

p
k(f)

= (2 − pk) × µ
p
k(f)

= (2 − p2
k−1) × (pk−1 + 1) × µ

p
k−1(f)

= (−p3
k−1 − p2

k−1 + 2pk−1 + 2) × µ
p
k−1(f)

To sum up, we obtain

{

p0 = p

µ
p
0(f) = 1

(3)

{

pk = −p4
k−1 + 2p2

k−1

µ
p
k(f) = (−p3

k−1 − p2
k−1 + 2pk−1 + 2) × µ

p
k−1(f)

(4)

Theorem 1 (Golden Section theorem). For uniform alternating Boolean
decision trees T k

2 , when k ≈ ∞,

pk :



























= 1 p = 1

≈ 1 1 > p >
√

5−1
2

=
√

5−1
2 p =

√
5−1
2

≈ 0 0 < p <
√

5−1
2

= 0 p = 0

Proof. By pk = −p4
k−1 + 2p2

k−1, we have

pk − pk−1 = −p4
k−1 + 2p2

k−1 − pk−1

= −pk−1 × (pk−1 − 1) × (pk−1 + 1+
√

5
2 ) × (pk−1 + 1−

√
5

2 )

Then, we can easily observe that:


