Random Extraction from Freehand Drawings and
[ts Semantics Based on Forcing Complexity:
Extended Abstract

Toshio Suzuki*and Akio Kawanishi
Department of Mathematics and Information Sciences,
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
toshios@acm.org whitecat@titan.ocn.ne.jp

November 24, 2005; revised Feburuary 20, 2006

Abstract. We present an algorithm that converts a set of bitmaps of freehand
drawings to an almost random bit sequence. The goal of this article is to show,
by introducing a mathematical model of an irregular object, that our algorithm
preserves the irregularity of freehand drawings. Our model is defined by using
forcing complexity, that is, the minimum size of a forcing condition. We show
that our model is more suitable for our purpose than known models of weak
random objects such as Martin-Lof randomness, resource bounded randomness
and genericity, min-entropy and so on. We show that every Martin-Lof random
oracle is irregular in our sense. We show experimental results, too.

1 Introduction

We present an algorithm that converts a set of bitmaps of freehand drawings
to an almost random bit sequence (§3). Fig. 1 is an example of such a bitmap.
We show statistical results (§4) for five sets of bitmaps. Each sets consists of
particular type of bitmaps (Fig. 1-5). We expect our algorithm will produce
good random seeds for other random number generators.

=

Figure 1: Figure 2: Figure 3: Figure 4: Figure 5:

*The author was partially supported by Grant-in-Aid for Scientific Research (No. 14740082
and No. 17540131), Japan Society for the Promotion of Science.

Although statistical tests are necessary to examine goodness of a random
number generator, they are not sufficient. The reason is as follows. A generator
of linear congruence method or of feedback shift register method [Ge03] often
passes statistical tests with good scores. However, a “random” sequence given by
such a method is not irregular at all in the sense of computational complexity. In
particular, such a sequence has low Kolmogorov complexity, and has low circuit
complexity. In order to show that an output sequence is enough irregular in the
sense of computational complexity, we have to define mathematical model (in
other words, semantics) of an irregular object, and have to show that an output
is irregular under certain reasonable hypotheses. For a string u, its Kolmogorov
complexity denotes, roughly speaking, the least length of a computer program
that outputs the string. An infinite binary sequence is called Martin-Lof random
if it passes all effective statistical tests. It is known as a result of Schnorr that
an infinite binary sequence is Martin-Lof random if and only if every initial
segment of it has large Kolmogorov complexity. For our purpose, the class of
all Martin-Lof random oracles is a too small class as a model of the class of all
irregular objects. Degree of irregularity of a freehand drawing is not necessarily
so high as a Martin-Lof random oracle. On the other hand, the class of all oracles
without polynomial-sized circuits is a too large class as a model of the class of all
irregular objects. Because, even if an oracle X does not have polynomial-sized
circuits, it is possible that Vn € N X (2n) = X (2n + 1).

The goal of this article is to show that our algorithm preserves irregularity of
freehand drawings, by giving semantics of irregular objects and random extrac-
tion. Our semantics is based on forcing complexity, that is, the minimal size of
a forcing condition. Contrastively to Kolmogorov complexity, the smaller forc-
ing complexity shows the higher degree of randomness. Forcing is a basic proof
technique of set theory. In the theory of forcing, it is studied how properties of
a large structure is determined by its partial information. Many applications
of forcing to computational complexity are known. The forcing method that
we use is a very simple one introduced by Dowd [Do092]. In this setting, the
role of a large structure is played by an oracle, where an oracle denotes (the
characteristic function of) a subset of {0,1}*, and {0, 1}* denotes the set of all
strings of finite lengths. A function is called a forcing condition if its domain is
a finite subset of {0,1}* and its range is a subset of {0,1}. By adding a set of

query symbols {&}, €2, €3, ---} to the usual propositional calculus, we get the
relativized propositional calculus [Do92]. For each n, the symbol £ is an n-ary
connective. If q1, g2, -+, qn are propositional variables, the interpretation of

E"(q1,q2,* ,qn) is, roughly speaking, given by “the string ¢; - - - ¢, belongs to
a given oracle”. When a formula F' of the relativized propositional calculus and
an oracle X are given, the concept of “F' is a tautology with respect to X” is
naturally defined. If S is a forcing condition and F is a tautology with respect to
every oracle X that is an extension of .S, then we say that S forces F'. Suppose
that r is a positive integer. A formula of the relativized propositional calculus
is called an r-query formula if it has just r-many occurrences of query symbols.
An oracle A is called an r-Dowd oracle if there exists a polynomial p such that
for every r-query formula F' that is a tautology with respect to A, there exists

a forcing condition S such that S is a subfunction of A, the cardinality of the
domain of S is at most p(|F|), where |F'| denotes the binary length of F, and
such that S forces F. It is known that for every positive integer r, the class
of all -Dowd oracles has Lebesgue measure one (sketch of a proof is in [D092],
and more rigorous proofs are in [Su01, Su02]). Though Dowd used terminology
“an r-generic oracle” to denote an r-Dowd oracle, the concept of m-Dowd oracles
is different from the concept of r-generic oracles in arithmetical forcing. Note
that we use forcing and tautologies only for semantics. Our algorithm does not
utilize these concepts.

In §5, we introduce three requirements that a model of the class of irregular
objects should satisfy. And, we define our mathematical model of an irregu-
lar oracle as to be an oracle that is 7-Dowd for all positive integer . Many
researchers have been formulated mathematical models of “an almost random
object”. In §6, we review some of such models: Martin-Lof randomness, re-
source bounded randomness of Schnorr and Lutz, resource bounded genericity
of Ambos-Spies et al., pseudorandomness in Goldreich’s book and min-entropy
of Zuckerman, and so on. We show that these models do not satisfy the three
requirements in §5. And, we show that every Martin-Lof random oracle is irreg-
ular in our sense. In §7, we prove that our model satisfies the three requirements
in §5, and that our algorithm preserves irregularity of freehand drawings.

This article is based on our research report [KS05] and our talks in McMaster
University [SK05a] and in Tokyo Metropolitan University [SK05b].

2 Notation and Basic Definitions

General Definitions. By N we denote the set of all non-negative integers.
Strings are ordered by length-lexicographic order, and (k + 1)st one is denoted
by z(k). For example, z(0) is the empty string that is denoted by A, z(1) is
0, and z(2),2(3), 2(4) are 1,00, 01, respectively. A subset of {0,1}* is called an
oracle. An oracle is identified with its characteristic function. The class of all
oracles is called Cantor space. For a set A, its cardinality is denoted by |A|.
A set T C {0,1}* is called sparse if there exists a polynomial p such that for
every positive integer n, it holds that [{u € {0,1}=" : T(u) = 1}| < p(n). For
basic concepts of computational complexity including oracle Turing machines,
see [BDG88, volume I]. Suppose that C is a computational complexity class
such as P or NP. Then, an infinite subset X of {0,1}* is called a C-immune
set if X does not have an infinite subset that belongs to C. If both X and the
complement of X is C-immune, then we say that X is C-bi-immune. For the
concept of immune sets, see [BDG88, volume II] or [YS05]. For two functions f
and g, if the domain of f is a subset of the domain of g and if g agrees with f in
the domain of f, then we say “f is a subfunction of g” or “g is an extension of
f7. Throughout the article, “a bitmap file” is often called simply “a bitmap”.
Runs and rate of 1. A given string u of length n, by the rate of 1
in u we denote |{i € {0,1,---,n —1} : u(i) = 1}|/n. In a given string, if a
consecutive portion consists of a same alphabet and the portion is not properly

included by other such a portion, then it is called a run. For example, a string
071° 03 16 has four runs, 07, 1°, 02 and 1%, where for example 03 denotes 000.
Suppose ng and np are positive integers and we have ng-many cards written
‘0’ and ni-many cards written ‘1’, and we make a trial to arrange them in one
line. In each result of a trial, let r denote the number of runs. It is known that
probabilistic distribution of r is approximately normal distribution, provided
that ng, n1 and the number of trials are sufficiently large, and provided that
the way of arrangement is truly random. Let n = ng +n1 and 8 = ny/n. Then
the mean value of 7 is approximately 2n3(1 — 3), and the variance (that is, o)
of r is approximately 4n3?(1 — 3)2. Then, the probabilistic distribution of the
following is approximately the standard normal distribution.

r—2n8(1—0)
2ynp(1—p)

As is well-known, in the standard normal distribution, the mean value is 0, the
variance is 1, and the interval [—1.96, 1.96] has probability about 0.95.

The Relativized Propositional Calculus and Forcing Complexity.
The relativized propositional calculus is defined as in Introduction section. Given
an oracle A, we define an n-ary Boolean function A™ as follows, and &" is
interpreted as A™. For each k = 0,1,---,2" — 1, the value of A™ at the (k+ 1)st
n-bit string in lexicographic order is defined as to be A(z(k)). For example,
A%(00), A2(01), A%(10) and A2(11) are A(N), A(0), A(1), A(00), respectively.
The concepts of a forcing condition, “to force” and “a tautology with respect
to a given oracle” are defined as in Introduction section. For example, let
F Dbe the following formula of the relativized propositional calculus. (gy <
&(q1,q2,q3)) = (qa V —qo). F is a tautology with respect to (the characteristic
function of) the empty set. Suppose that S is a constant function with domain
{2(0),2(1),--+,2(7)} and with value 0. Then S is a forcing condition, and S
forces F'. No proper subfunction of S forces F. For each positive integer r,
the concept of r-Dowd oracles is defined as in Introduction section. For more
detailed explanation on the relativized propositional calculus, forcing complexity
and Dowd-type generic oracles, see [Su01, Su02].

(2.1)

3 Our Algorithm

Description of Our Algorithm. In practical applications, we make suf-
ficiently many monochrome bitmap files Xy, X1, X3, --- by drawing, and we
then convert them into Boolean matrices Y@, YD V(2 ... We assume that
for each j, the bitmap X; has a square canvas of N? pixels, and that Y0 is
of type N x N, where N is a fixed positive integer. And, each black (white)
pixel in a monochrome bitmap is converted to 1 (0) in the corresponding matrix.
Throughout this section, C; and Cy are fixed positive integers. We define the
values of Cy and Cy depending on N. Cs is defined as to be floor(log, (C1 4 C3)),
where floor(z) denotes the maximum number not greater than x. Let ¢; be the
quotient of N2 divided by C;. Our algorithm is an oracle Turing machine, and

the oracle is given by the sequence of matrices Y@, Y1) V(@) ... Let n be
the quotient of ¢;C5 divided by 2, and ¢ be its remainder. An input of our al-
gorithm is a non-negative integer, say k = gn + k' (where ¢, k' € N and k¥’ < n),
and output for k is given by the output of Algorithm 1 for the input &’ and an
oracle matrix Y (9,

Algorithm 1 /* The core of our algorithm. Output is a bit (0 or 1). */

input, an integer k (0 < k < ¢1C3);

input, a Boolean matrix A = (a; ;) (¢,5 € {0,1,--- ,N —1});

/* A plays a role of a finite portion of an oracle. */

STEP1: Define an array a as follows.

a=0ap,0" " A,N-101,0 " A1,N—1"""AN-1,0" """ AN—-1,N—1-

STEP2: Partition the array a so that each portion consists of Cy bits. Let
a® = ... a(col)_l, a® =qlV .. -a(cll)_l, .-+ be these portions. Let (", ri®
0

, --- be the lengths of runs in a(?). For each j, let r§0)/ be the binary

expression of r§0) + (5. For each j, remove the leftmost 1 from rg-o)/, and let Sg_o)

be the resulting string. Get an array by concatenating 380), s§0>, e ,55-0), cee

and let an array b(®) be its leftmost C bits.

/* Example. Suppose that Cy = 2, C5 = 5 and a(®) = 0001111001 - - -. Then
r® =3, 7" =4, " =2 " =101, {" = 110 and r{"" = 100. And,
s =10, s\ = 01 and s = 00. Finally, we get b = 10010. */

By applying the same operation to a(!),a(?, .. we get arrays bV, b ...
We concatenate b(o),b(l),b@)7 --- and let b = by---bap—14¢ be the resulting
array (Fig. 6). /* For the definitions of n and ¢, see the begining of this section.
*

/

STEP3: Output by XORbay——1+¢, where XOR denotes exclusive-or.

End, Algorithm 1.

)

o T - :
NO! / 0) /
R E— i i
p(©) p(® '

Figure 6: Block wise operation

Efficiency of Labor Using Our Algorithm. In order to make suffi-
ciently large table of random numbers by using Algorithm 1, we have to draw
many bitmap files. For simplicity, we assume that the volume of labor to draw
is measured by the amount of pixels of canvases in bitmaps. Then volume of
labor to draw M-many bitmaps, where each bitmap has a square canvas of N2
pixels, is N2M. When we use (matrices made of) such M-many bitmaps as
oracles, the amount of outputs (the number of bits) is (1/2)C5 floor(N?2/C1)M.

In the case of N = 256, C; = 60 and Cy = 2, the value of the above formula is
approximately 0.0417 x 2562M. This is the amount of harvests, and is a linear
function of the volume of labor. We defined C5 as to be log,(Cy + C2). One
may criticize our algorithm for the smallness of C'5. However, such criticism is
valid only in the case where N 2M is not so larger than C; and C3. Note that
the amount of harvests is not logarithm of the volume of labor.

4 Results of Experiments

We implemented Algorithm 1 by the C++ programming language with N =
256, C1 = 60 and Cy = 2 (thus C5 = 5). Table 1 summarizes our experiments.

file set F1 F2 F3 F4 F5
pen mouse pen tablet mouse pen tablet mouse
motif || meaningless | meaningless | cartoons | cartoons | geometrical
curves curves of faces of faces designs
m(f) 0.500 0.497 0.480 0.497 0.469
a%(B) 8.47 E -5 9.15 E -5 229 FE-4| 136 E-4 1.14 E -3
m(V) -0.140 9.54 E -3 -0.186 -0.0853 -0.844
a?(V) 0.952 1.015 1.528 0.998 5.466
X2 pass pass pass pass fail
e 0.930 0.998 0.100 0.371 0.0000

Table 1: The symbol “E k”, where k is an integer, denotes “x10% 7.

For each i =1,---,5, the bitmap file set F; consists of 100 files, where 50 of
them are drawn by the first author and other 50 are drawn by the second author.
Fig. 1-5 in Introduction section are examples of members of F}—F5, respectively.
Each bitmap in these five sets is drawn in about one minute. In the line named
“pen” the item “mouse” denotes that the bitmaps are drawn by using mouse
and a paint software (Paint of Microsoft Windows®). And, the item “pen
tablet” denotes that the bitmaps are drawn by using a pen tablet (WACOM
intuos 3® PTZ-630) that responds to stress of a pen. In the rest of this section,
let n = 2730. By an execution of the C++ program, each bitmap is converted
to an array of length n, that is, the array (by XORbgy—g—1:k=0,1,--- ,n—1).
Thus, each set of bitmaps is converted to a set of arrays. For each Boolean array
u of length n, by 8 we denote the rate of 1 (see §2). And, by r we denote the
number of runs in u. Moreover, we define V' as follows (see equation (2.1) in §2).
V = (r—2n8(1 - 8))/(2y/nB(1 — B)). In the table, m(5), 0*(8), m(V'), o*(V')
denote mean value of 3, variance of 3, mean value of V' and variance of V in
the corresponding set of arrays, respectively. The line named x? denotes results
of chi-square goodness of fit test of V' to the standard normal distribution. The
degree of freedom in our test is 19. Throughout the rest of this section, we
denote it by d: thus d = 19. We partition the real line into (d + 1)-many
intervals I; (j = 1,---,d + 1), symmetrically with respect to the origin O,

so that each I; has probability 1/(d + 1) in the standard normal distribution.
Then our null hypothesis is: “For each j, among given 100 samples of statistic
V, just 100/(d + 1)-many of them belongs to I;.” We test this hypothesis with
significance level 0.05 (that is, 5 %). Let ¢ be the value of chi-square computed
by using the observed frequencies. Let a be the probability of the event “x > ¢”
in the chi-square distribution with degree of freedom d. If o > 0.05, the null
hypothesis is not rejected. In this case, in the line named x? of the table, we
write “pass”’. If o < 0.05, the null hypothesis is rejected. In this case, in the
table, we write “fail”. About introduction to chi-square tests, see for example
[HMCO5].

5 Mathematical Model of Irregular Objects

We do not introduce a mathematical model of an irregular string of finite length.
Instead, we introduce a model of an irregular string of infinite length. In prac-
tical applications, we make sufficiently many bitmap files X7, X5, X3, -+ by
drawing, and converted them into matrices YW, y®@ y® ... and again con-
verted them into strings y(», 3, y®), ... (see STEP 1 of Algorithm 1). By
concatenating these strings, we get a string of enough long length. In theoretical
investigation, we approximate such a long string by a string of infinite length.
From experiences, we make the following working hypotheses.

Hypothesis 1: In each string y), the rate of 1 (see §2) may be far from 0.5
unless a drawer intentionally make the rate close to 0.5.
Hypothesis 2: It is impossible to make a fast computer program that
correctly predicts strings y(V, y(®, y®) ...
Hypothesis 3: However, the sequence gained by concatenating strings y(),
y@, y®3) ... may have an infinite subsequence whose bits are predictable with
high probability. For example, the four corners of a square canvas of a bitmap is
often remain 0 (white) unless a drawer intentionally make the corners 1 (black).
We simplify the above three hypotheses, and formulate the following three
requirements for our mathematical model of “irregular oracles”. Note that they
are not requirements for each individual irregular oracle but requirements for
the class of all irregular oracles. Requirements 1 and 2 are mandatory, and
Requirement 3 is optional.
Requirement 1 : For every positive integer m, there exists an irregular
oracle X such that

o <0 X G(0) = 1)

n— o0 n

(5.1)

is at most 1/2™. And, there exists an irregular oracle X such that the limit

(5.1) is no less than 1 — 1/2™ (see §2 for the symbol z(7)).

Requirement 2 : 1. An irregular oracle X does not have polynomial-sized

circuits (X & P/poly). Hence, it is not polynomial-time computable (X & P).
2. Suppose that k is a positive integer, f is a function from {0, 1}* onto

{0,1}, and X is an irregular oracle. Then, there exists a natural number i such

that the following holds: f(X(z(7)), X(2(i+1)),--- , X (2(: + k))) = 0.
Requirement 3 : Suppose that A is an irregular oracle, f : {0,1}* — {0,1}
is a polynomial-time computable function, and 7' C {0,1}* is a sparse set such
that T" is polynomial-time computable. Let B be an oracle defined as follows.
For each string u, if u € T then B(u) is defined as to be f(u), and otherwise
B(u) is defined as to be A(u). Then, B is irregular. (For sparse sets, see §2.)

Now, we introduce our mathematical model of irregular oracles. If an oracle
D has the following Property 1, we consider that D is irregular.
Property 1 “D is an r-Dowd oracle for any positive integer r.”

Suppose that f is a function from Cantor space to Cantor space such that
there exists a polynomial-time-clocked oracle Turing machine M~ such that for
any oracle A and for any string u, it holds that M (u) = f(A)(u). If f has
the following Property 2, then we consider that f is a function that preserves
irregularity. The class of all such functions is closed under composition.

Property 2 “For any oracle D that has Property 1, f(D) has Property 1, too.”

6 Comparison of Our Model with Other Models

Many researchers have been formulated mathematical models of “an almost
random string”. In this section, we review some of such models and show that
they do not satisfy the three requirements in §5.

Martin-L6f Randomness. In the following, open set is that of canonical
product topology of Cantor space.

Definition 1 [YDDO04] (see [Ca02, ML66] for more formal definition)

1. A computable collection {V}, : n € N} of computably enumerable open
sets is said to be a Martin-Ldf test if for all n the measure of V,, is at most
27",

2. An oracle X is said to pass the Martin-Lof test if 3n X & V,.

3. An oracle X is said to be Martin-Lof random if it passes all Martin-Lo6f
test.

The class of all Martin-Lof random oracles has Lebesgue measure one. For a
string u, let K (u) denote the (prefix free) Kolmogorov complexity of u. Schnorr
(1971) showed that an oracle X is Martin-Lof random if and only if

JeeNVR e NK(X [{0,1,---,n—=1})>n—c .

If X is Martin-Lof random then the limit (5.1) in §5 is 1/2, and X is P-bi-
immune. Hence, if we replace “an irregular oracle” in the statements Require-
ment 1 and 3 by “a Martin-Lof random oracle”, resulting statements do not
hold.

Theorem 1 Suppose that an oracle A is Martin-Lof random. Then A is r-
Dowd for any positive integer r.

Resource Bounded Randomness and Genericity. Schnorr (1971)
criticized the concept of Martin-Lof randomness, and proposed concepts of re-
source bounded measure and resource bounded randomness. Lutz (1992) re-
discovered and developed these concepts. Resource bounded randomness has
close relationships with resource bounded genericity of Ambos-Spies et al. For
a survey of resource bounded randomness and genericity, see [AM97].

Suppose X is an oracle and ¢(n) is a numerical function such that Vn €
Nt(n) > n? Then, every t(n)-random oracle is ¢(n)-generic [ANT96, ATZ97],
and every t(n)-generic oracle is DTIME(¢(2"~!))-bi-immune [ANT96]. Hence,
if we replace “an irregular oracle” in the statement of Requirement 3 by “an
oracle that is p-generic for every polynomial p”, then resulting statement fails.
The argument for p-randomness is parallel.

Time Complexity, Circuit Complexity and Their Variants. Even
if we assume that an oracle X has enough high time complexity, it is possible
that Vn € NX(2n) = X (2n + 1). Therefore, if we replace “an irregular oracle”
in the statement of Requirement 2 by “an oracle that is not polynomial-time
computable”, then resulting statement fails. The argument for circuit complex-
ity is parallel. It is known that no 1-Dowd oracle has polynomial-sized circuits
[Su02].

Pseudorandomness in Goldreich’s Book. In the study of cryptogra-
phy by means of computational complexity, the concept of pseudorandomness is
defined as a probabilistic distribution that is not distinguishable from uniform
distribution by a computer program with certain restriction on resources (time,
memory and so on) [Go99, Chapter 3]. If we replace “an irregular oracle” in the
statement of Requirement 1 by “a pseudorandom oracle” in the above sense,
then resulting statement does not hold.

Min-entropy. Zuckerman introduced the concept of min-entropy (1990)
in order to formulate a mathematical model for a physical random source. The
concept of extractor introduced by Nisan and Zuckerman (1993, 1996) is based
on min-entropy. For a survey on their theory, see [NTs99, Sh02]. Min-entropy
is not suitable for a model of an irregular objects in our setting. The reason is
similar to the case of pseudorandomness in Goldreich’s book.

7 Semantics of Random Extraction

Theorem 2 The statements of Requirement 1, 2, 3 of §5 holds if we replace
“an irreqular oracle” by “an oracle that is r-Dowd for all positive integer r”.

We define an oracle Turing machine M as follows. By using the machine
M, we introduce a mathematical model of Algorithm 1, and we show that the
algorithm preserves irregularity of freehand drawings. Suppose that N, Cy, Cy
are positive integers, and let C3 = floor(log,(Cy + Cs)), where we assume Co <
C1 < N. And, let ¢; be the quotient of N? divided by C;. Let n be the

quotient of ¢1C5 divided by 2, and ¢ be its remainder. For an oracle X and an
input string z(k), where k € N, we define the output of M as follows. Let ¢
be the quotient of k divided by n, and let k' be its remainder. Let a be the
string X(q1C1¢) X (q1C1g+ 1)+ X(q1C1(¢ + 1) — 1). We execute STEP 2 of
Algorithm 1 for a. Next, we execute STEP 3 of Algorithm 1 with ¥’ (for k in
STEP 3), and get an output.

Let f denote the mapping of an oracle such that for each oracle X, f(X) is
(the characteristic function of) the oracle {u € {0,1}* : M X (u) = 1}. The oracle
X is a mathematical model of (an array given by) sufficiently many bitmaps,
provided that X has Property 1 of §5. And, the function f is a mathematical
model of Algorithm 1.

Theorem 3 The mapping f defined above has Property 2 of §5. That is, if an
oracle A is r-Dowd for all positive integer r then so is f(A).

Acknowledgment and final note. = We thank Professor Teruhisa Hochin
at Osaka Prefecture University for his advice on how to deal with bitmap files.
Forthcoming complete version of this article will contain all the proofs that are
omitted from this extended abstract and will contain more detailed experimental
results.

References

[AM97] Ambos-Spies, K., Mayordomo, E.: Resource-bounded measure and
randomness. In: Lecture Notes in Pure and Applied Mathematics
187 (A. Sorbi, Eds.), pp.1-47, Marcel Dekker, New York, 1997.

[ANT96] Ambos-Spies, K., Neis, H.-C. and Terwijn, S. A.: Genericity and mea-
sure for exponential time. Theoret. Comput. Sci., 168 (1996), pp. 3-19.

[ATZ97] Ambos-Spies, K., Terwijn, S. A. and Zheng, X.: Resource bounded
randomness and weakly complete problem. Theoret. Comput. Sci.,
172 (1997), pp. 195-207.

[BDGS8S] Balcézar, J. L., J. Diaz, and J. Gabarré: Structural complexity I & II.
Springer, Berlin, 1988 (I), 1990 (II).

[Ca02] Calude, C.S.: Information and Randomness: An Algorithmic Per-
spective, 2nd ed.. Springer, Berlin / Tokyo, 2002.

[Do92] Dowd, M.: Generic oracles, uniform machines, and codes. Information
and Computation, 96 (1992), pp. 65-76.

[Ge03] Gentle, J. E.: Random number generation and Monte Carlo methods
(second edition). Springer, New York, 2003.

[Go99] Goldreich, O.: Modern cryptography, probabilistic proofs and pseudo-
randomness. Springer, Berlin / New York, 1999.

10

[HMCO05] Hogg, R. V., McKean, J. W., Craig, A. T.: Introduction to Mathe-

[KS05]

[MLG66]

[NTs99]

[Sh02]

[Su01]

[Su02]

[SK05a]

[SKO5b)

[YDDO4]

[YSO05]

matical Statistics, sizth edition. Pearson Education, London, 2005.

Kawanishi, A. and Suzuki, T.: Random extraction from freehand
drawings and its semantics: preliminary report (in Japanese). In:
Surikaisekikenkytisho Kokytroku 1442 (2005), pp. 8-41.

Martin-Lof, P.: The definition of random sequences. Information and
Control, 9 (1966), pp. 602-619.

Nisan, N. and Ta-Shma, A.: Extracting randomness: a survey and
new constructions. Journal of Computer and System Sciences, 58
(1999), pp. 148-173.

Shaltiel, R.: Recent developments in explicit constructions of extrac-
tors. Bulletin of the EATCS, 77 (2002), pp. 67-95.

Suzuki, T.: Forcing complexity: minimum sizes of forcing conditions.
Notre Dame J. Formal Logic, 42 (2001), pp. 117-120.

Suzuki, T.: Degrees of Dowd-type generic oracles. Inform. and Com-
put., 176 (2002), pp. 66-87.

Suzuki, T. and Kawanishi, A.: Random extraction from freehand
drawings and its semantics based on forcing complexity. A talk at
Franco-Canadian Workshop on Combinatorial Algorithm (COMAL
2005), McMaster University, Hamilton, Canada, August 18-20, 2005.

Suzuki, T. and Kawanishi, A.: Random extraction from freehand
drawings and its semantics based on forcing complexity. A talk at 6th
symposium on algebra and computation (AC2005), Tokyo Metropoli-
tan University, Japan, November 15-18, 2005.

Yu, L. and Ding, D. and Downey, R.: The Kolmogorov complexity
of random reals. Annals of Pure and Applied Logic, 129 (2004), pp.
163-180.

Yamakami, T. and Suzuki, T.: Resource bounded immunity and sim-
plicity, Theoret. Comput. Sci., 347 (2005), pp. 90-129.

11

