楕円 K3 曲面について

北海道大学大学院理学研究科 島田 伊知朗

1 Introduction

楕円 K3 曲面の特異ファイバーの configuration と Mordell-Weil 群をすべて列挙する. K3 曲面および楕円曲面の基礎的な事項について復習したあと,得られたリストから見て取れるいくつかの結果を紹介し,最後にこのリストを得るためのアルゴリズムの概要を示す.

アルゴリズムの基礎となるのは,楕円 K3 曲面を Hodge 構造により特徴づける金銅-西山の補題(定理 6.1)と,Nikulin による discriminant form の理論である.この 2 つの理論により,楕円 K3 曲面の問題が,格子と有限アーベル群の問題に帰着される.このアルゴリズムを Maple を使用して書き,求めるリストを得た.

楕円 K3 曲面の特異ファイバーの

([12], [10]) が,いずれも extremal な楕円

K3 曲面の場合にとどまっていた.一方,Nikulin の discriminant form の理論を,Torelli の定理を通して K3 曲面の幾何学に応用する仕事としては,平面 6 次曲線の特異点の configuration をすべて調べた Yang [11] の結果がある.

2 K3曲面

はみられている

単連結でいたるところゼロでない正則 2 形式をもつ複素曲面を K3 曲面という. K3 曲面は,アーベル曲面とともに,楕円曲線の曲面への一般化とみることができる. K3 曲面の諸性質をまとめておこう. 証明は例えば [1] を参照されたい.

定理 2.1 K3 曲面は Kähler である.	
定理 2.2 K3 曲面全体は連結な族をなす.	
系 2.3 任意の 2 つの K3 曲面は微分同相である.	

定理 2.4 Xを K3 曲面とする.

- $(1)H^1(X;\mathbb{Z}) = H^3(X;\mathbb{Z}) = 0.$
- $(2)H^2(X;\mathbb{Z})$ はランク 22 の自由 \mathbb{Z} 加群.
- (3) カップ積 $H^2(X;\mathbb{Z}) \times H^2(X;\mathbb{Z}) \to H^4(X;\mathbb{Z}) \cong \mathbb{Z}$ により , $H^2(X;\mathbb{Z})$ を格子とみると , $U^{\oplus 3} \oplus (-E_8)^{\oplus 2}$ と同型 . ここで U は

0 11 0

を交叉行列とする格子, $-E_8$ は負定符号 E_8 ルート格子,つまり

を交叉行列とする格子.

(4)dim $H^{2,0}(X;\mathbb{C}) = \dim H^{0,2}(X;\mathbb{C}) = 1$,dim $H^{1,1}(X;\mathbb{C}) = 20$. (5)

$$H^{1,1}_{\mathbb{R}}(X):=H^{1,1}(X;\mathbb{C})\cap H^2(X;\mathbb{R})$$

$$H^{0,2+2,0}_{\mathbb{R}}(X):=(H^{2,0}(X;\mathbb{C})\oplus H^{0,2}(X;\mathbb{C}))\cap H^2(X;\mathbb{R})$$

とおくと $H^2(X;\mathbb{R})$ は $H^{1,1}_{\mathbb{R}}(X)\oplus H^{0,2+2,0}_{\mathbb{R}}(X)$ と直交直和分解し,カップ積は, $H^{0,2+2,0}_{\mathbb{R}}(X)$ の上で正定値となる.

 $:=U^{\oplus 3}\oplus (-E_8)^{\oplus 2}$ を K3 格子とよぶ . これは , 符号が (3,19) の unimodular な偶格子 (すべての元の ノルムが偶数である格子) として , unique に特徴づけられる [8].

3 Torelliの定理

K3 曲面の研究で中心的な役割をはたすのが次の Torelli 型定理である.この定理により, K3 曲面の幾何学的問題の多くが格子の問題に翻訳される.

定理 ${\bf 3.1}$ (1) X, X' を K3 曲面とする . $\mathbb Z$ 加群としての同型 $:H^2(X;\mathbb Z)\stackrel{\sim}{\to} H^2(X';\mathbb Z)$ でカップ積を保ち , $\otimes_{\mathbb Z}\mathbb C$ が Hodge 分解を保つものが存在すれば , X と X' は同型である .

(2) $\otimes_{\mathbb{Z}}$ \mathbb{R} の正定値な 2 次元部分空間 P が与えられたとき,ある K3 曲面 X と,格子としての同型 : $H^2(X;\mathbb{Z})\stackrel{\sim}{\to}$ で $_{\mathbb{R}}(H^{0,2+2,0}_{\mathbb{R}}(X))=P$ なるものが存在する.

この定理の証明の歴史が [1] に簡単に書かれている.

4 楕円曲面の Mordell-Weil 群と特異ファイバーの *ADE*-型

複素曲面

表 1: 特異ファイバーの *ADE* 型

fiber	1,+1	I_{m-4}^{*}	11	11*	111	111*	1V	1V*
ADE 型	A_I	D_m	既約					

また, のオイラー数を

euler() :=
$$a_l \cdot (l+1) + d_m \cdot (m+2) + e_n \cdot (n+2)$$
.

と定義する.これは,楕円曲面 $f:X\to C$ にたいして,可約なファイバーの 和集合 $f^{-1}(R_f)$ の位相的オイラー数が常に euler($_f$) 以上であるように定義されている.

 $f:X\to\mathbb{P}^1$ が楕円 K3 曲面なら,X の Picard 格子 $H^{1,1}(X;\mathbb{Z}):=H^{1,1}(X;\mathbb{C})\cap H^2(X;\mathbb{Z})$ は $f^{-1}(R_f)$ の O と交わらない既約成分のコホモロジー類で生成される L(f) と同型な格子 S_f と,O および $f:X\to\mathbb{P}^1$ の一般ファイバーで生成される U と同型な格子 H_f の直和 H_f を含む. dim $H^{1,1}(X;\mathbb{C})\leq 20$ より H_f の位相的オイラー数以上である. したがって,次を得る.

命題 $\mathbf{5.1}\ f:X\to\mathbb{P}^1$ を楕円 K3 曲面とすると, $\mathrm{rank}(\ _f)\le 18$ および $\mathrm{euler}(\ _f)\le 24$ が成立する.

を ${\rm rank}(\) \le 18$ および ${\rm euler}(\) \le 24$ をみたす形式的 ADE-型の集合とする.この集合は 3937 個のメンバーを持つ.

リスト \mathcal{P} を見ることで,次の諸結果を得る.

定理 5.2~(1) のうち , 3279 個が楕円 K3 曲面の特異ファイバーの ADE-型 として現れる .

- $(2) \in$ が $\mathrm{rank}() < 14$ をみたせば , = f なる楕円 K3 曲面 $f: X \to \mathbb{P}^1$ が存在する .
- (3) \in が rank() = 14 をみたせば , $\models E_6 + 8A_1$ のときおよびそのときに限り , = f なる楕円 K3 曲面 $f: X \to \mathbb{P}^1$ が存在する .

定理 $\mathbf{5.3}$ (1) \in が rank() < 11 をみたせば , = $_f$ なる楕円 K3 曲面 $f: X \to \mathbb{P}^1$ で $TMW_f = (0)$ なるものが存在する .

(2) ∈ 慨×

定理 5.5 楕円 K3 曲面 $f: X \to \mathbb{P}^1$ の Mordell-Weil 群のねじれ部分群 TMW_f はつぎのいずれかと同型である.これらの群のどれもが,楕円 K3 曲面の Mordell-Weil 群のねじれ部分群として現れる.

(0)

 $\mathbb{Z}/(2)$, $\mathbb{Z}/(3)$, $\mathbb{Z}/(4)$, $\mathbb{Z}/(5)$, $\mathbb{Z}/(6)$, $\mathbb{Z}/(7)$, $\mathbb{Z}/(8)$, $\mathbb{Z}/(2) \times \mathbb{Z}/(2)$, $\mathbb{Z}/(4) \times \mathbb{Z}/(2)$, $\mathbb{Z}/(6) \times \mathbb{Z}/(2)$, $\mathbb{Z}/(3) \times \mathbb{Z}/(3)$, $\mathbb{Z}/(4) \times \mathbb{Z}/(4)$.

 TMW_f の位数が大きいとき , $f: X \to \mathbb{P}^1$ は f により特徴付けられる .

定理 5.6 $f: X \to \mathbb{P}^1$ を楕円 K3 曲面とする.

- $\subset TMW_f \cong \mathbb{Z}/(7) \langle \rangle \qquad f = 3A_6$
- $\subset TMW_f \cong \mathbb{Z}/(8) \ \langle \ \rangle \qquad f = 2A_7 + A_3 + A_1$
- $\subset TMW_f \cong \mathbb{Z}/(6) \times \mathbb{Z}/(2) \langle \rangle \qquad f = 3A_5 + 3A_1$
- $\subset TMW_f \cong \mathbb{Z}/(4) \times \mathbb{Z}/(4) \langle \rangle \qquad f = 6A_3$

6 アルゴリズムの概要

まず楕円 K3 曲面の存在とその性質を Torelli の定理を使って格子の言葉に翻訳する.この仕事は,金銅 [4, Lemma~2.1] と西山 [7, Lemma~6.1] によりすでになされている.

偶格子 L の双対格子を L^\vee で表す. L^\vee は $\mathbb Q$ に値をもつ自然な双線形形式をもつ.格子 M が L を指数有限の部分格子として含むならば,M は L^\vee の L を含む部分格子として埋め込めることに注意する. L^\vee

表 2: Number of roots

Type	A_I	D_m	E_6	E ₇	E_8
roots(L())	/(/+ 1)	2m(m-1)	72	126	240

(ii) $M/L() \cong H$.

(iii)roots(M) = roots(L()).

(iv) $M \oplus U \oplus N$ は K3 格子 と同型な overlattice をもち,この overlattice のなかで M および N は primitive である.

M の符号は $(0, \operatorname{rank}(\))$ であり,N の符号は $(2, 18 - \operatorname{rank}(\))$ であることに注意する.

うめこみ $M\oplus U\oplus N\to$ において,M は S_f $H^{1,1}(X;\mathbb{Z})$ の primitive closure に対応し,U は H_f に対応し,N は $(S_f\oplus H_f)^\perp$ $H^2(X;\mathbb{Z})$ に対応する.

U が unimodular であること,および $U^{\oplus 2}\oplus (-E_8)^{\oplus 2}$ が符号 (2,18) の unique な unimodular 偶格子であることをもちいると,条件 (iv) は次の条件 に書き換えられる.

(iv)' $M \oplus N$ は unimodular な符号 (2,18) の偶格子のなかに指数有限の部分格子として M および N が primitive となるように埋め込める .

与えられた条件をみたす偶格子 M

表 3: Discriminant forms of root lattices

	$D_{L(\)}$	$q_{L(\)}$
A _I	$\bar{a}_{l}^{*} \sim \cong \mathbb{Z}/(l+1)$	(//(/+1))
$D_m(m : \text{even})$	$\bar{d}_1^* \sim \bar{d}_m^* \sim (\mathbb{Z}/(2))^{\oplus 2}$	m/4 1/2 1/2 1
$D_m(m : odd)$	$\bar{d}_1^* \sim \cong \mathbb{Z}/(4)$	(<i>m</i> /4)
E ₆	$\bar{e}_6^* \sim \cong \mathbb{Z}/(3)$	(4/3)
E ₇	$ar{e}_7^* \sim \cong \mathbb{Z}/(2)$	(3/2)
E ₈	(0)	(0)

表 4: Discriminant forms of lattices over \mathbb{Z}_p

	p (a)	$\begin{array}{ccc} & 0 & 1 \\ 2 & 1 & 0 \end{array}$	2 2 1 1 2
D	$\mathbb{Z}/(p)$	$(\mathbb{Z}/(2))^{\oplus 2}$	$(\mathbb{Z}/(2))^{\oplus 2}$
q	<u>a</u> p	$\frac{1}{2}$ 0 1 1 0	$\frac{1}{2}$ $\frac{2}{1}$ $\frac{1}{2}$

命題 $\mathbf{6.4}$ $\mathcal{I}D_{M}\mathcal{I}=\mathcal{I}\mathrm{disc}(M)\mathcal{I}$ の素因子の集合を P_{M} とする . discriminant $\mathrm{form}(D_{M},q_{M})$ は , $p\text{-part}(D_{M}^{(p)},q_{M}^{(p)})$ の直和に直交分解する:

$$(D_M, q_M) = \bigcap_{p \in P_M} (D_M^{(p)}, q_M^{(p)}).$$

さらに,各(D^(p) \$

これらの格子の discriminant form は表 4 から得られる.したがって,可換な p-群上の 2 次形式 (D_p,q_p) とランク n が与えられたとき, (D_p,q_p) を discriminant form にもつランク n の \mathbb{Z}_p 格子をすべて列挙することができる.

discriminant d, 符号 (r,s), および d の各素因子 p におけるランク r+s の \mathbb{Z}_p <

- [2] J. W. S. Cassels. Rational quadratic forms. Academic Press, London, 1978.
- [3] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups. Second edition. Grundlehren der Mathematischen Wissenschaften, **290**, Springer, New York, 1993.
- [4] S. Kondō. Automorphisms of algebraic K3surfaces which act trivially on Picard groups. J. Math. Soc. Japan, 44 (1992), no. 1, 75–98.
- [5] R. Miranda and U. Persson. Mordell-Weil groups of extremal elliptic *K*3surfaces. Problems in the theory of surfaces and their classification (Cortona, 1988), Sympos. Math., XXXII, Academic Press, London, 1991, pp. 167–192.
- [6] V. V. Nikulin. Integer symmetric bilinear forms and some of their applications. Math. USSR Izvestija 14 (1980), no. 1, 103–167.
- [7] K. Nishiyama. The Jacobian fibrations on some K3 surfaces and their Mordell-Weil groups. Japan. J. Math. (N.S.) **22** (1996), no. 2, 293–347.
- [8] J.-P. Serre. A course in arithmetic. Graduate Texts in Mathematics, 7, Springer, New York, 1973.
- [9] I. Shimada. On elliptic K3surfaces. preprint.
- [10] I. Shimada, D. Q. Zhang. Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces. preprint.
- [11] J.-G. Yang. Sextic curves with simple singularities. Tôhoku Math. J. 48 (1996), no. 2, 203-227.
- [12] Q. Ye. On extremal elliptic K3surfaces. preprint. http://xxx.lanl.gov/abs/math.AG, 9901081

060-0081 札幌市北区北10条西6丁目 shimada@math.sci.hokudai.ac.jp